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Executive Summary

We present a new hash function family AURORA as a candidate for a new cryptographic hash algo-
rithm (SHA-3) family. The hash function family AURORA consists of the algorithms: AURORA-
224, AURORA-256, AURORA-384, AURORA-512, AURORA-224M, and AURORA-256M, where
AURORA-224M and AURORA-256M are optional instances that are designed to have multi-
collision resistance.

AURORA-224 and AURORA-256 are constructed from the secure and efficient compression
function using a security-enhanced Merkle-Damg̊ard transform, i.e., the strengthened Merkle-
Damg̊ard transform with the finalization function. The compression function is designed based on
the well-established design techniques for blockciphers, and uses the Davies-Meyer construction.
Since most of existing attacks on hash functions exploited simplicity of message scheduling, we
employ a secure message scheduling, which is a different design philosophy from the MDx family
including SHA-2.

AURORA-384 and AURORA-512 employ a novel domain extension transform called the Double-
Mix Merkle-Damg̊ard (DMMD) transform. The DMMD transform consists of two parallel lines of
the compression functions and the mixing functions inserted at intervals. This domain extension
transform enables an efficient collision-resistant construction for double length hash functions.
Furthermore, the combination of the compression function and the DMMD transform achieves
further efficiency by sharing the message scheduling of two compression functions.

The overall structure of AURORA-224M and AURORA-256M is the same as AURORA-
384/512 except constants and the final mixing function. The DMMD transform also opens a new
efficient way of providing multi-collision resistance. By using the DMMD transform, AURORA-
224M and AURORA-256M efficiently achieve multi-collision resistance. As a result, the AURORA
family achieves consistency of the design, because all algorithms use similar 256-bit compression
functions as building blocks.

Moreover, the AURORA family achieves high efficiency on many platforms. In software imple-
mentation on the NIST reference platform (64-bit), AURORA-256 achieves 15.4 cycles/byte and
AURORA-512 achieves 27.4 cycles/byte. Also, AURORA shows good performance across a variety
of platforms, because it uses platform-independent operations. In hardware implementation, AU-
RORA enables a variety of implementations, from high-speed to area-restricted implementations.
Using a 0.13µm CMOS ASIC library, AURORA-256 can be implemented with only 11.1 Kgates in
an area-optimized implementation. In a speed-optimized implementation, AURORA-256 achieves
the highest throughput of 10.4 Gbps. For AURORA-512, the smallest size is 14.6 Kgates and the
highest throughput is 9.1 Gbps.

Achieving these good performance both in hardware and in software in a single algorithm family
which is based on the above design techniques makes a clear distinction between the AURORA
family and the SHA-2 family.
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Chapter 1

Introduction

This document describes the algorithm specifications and supporting documentation including
design rationale, security, efficient implementation, applications, advantage and limitations of the
hash function family AURORA, which we submit as a candidate for a new cryptographic hash
algorithm (SHA-3) family.

Since SHA-3 is expected to provide a substitute of the SHA-2 family, AURORA is designed to
preserve certain properties of the SHA-2 family including the input parameters, the output sizes,
collision resistance, preimage resistance, second-preimage resistance, and the one-pass streaming
mode of execution, according to the requirements for SHA-3 candidates [38]. Moreover, AURORA
is designed to offer features that exceed the SHA-2 family.

AURORA is designed based on the following design philosophy:

• Security: Its security level should be guaranteed by security proofs or security arguments.

– There is no known structural weakness in the design of the domain extension transform,
and the security of the hash function is supported by security proofs.

– In the design of a compression function, the structure and the components should be
chosen to facilitate analysis and to utilize the well-established techniques for blockcipher
design and analysis.

– It should be designed based on different design criteria from the MDx family including
SHA-2 so that a possibly successful attack on SHA-2 is unlikely to be applicable to it.

• Implementation Efficiency and Flexibility: It should be designed to have better effi-
ciency than the SHA-2 family on many platforms. Also, it should be designed to be less
platform-specific.

– It should be implemented efficiently in a wide range of software platforms (32-bit, 64-bit
and 8-bit processors with various compilers and operating systems) without dedicated
optimization techniques for specific processors.

– It should be suitable to flexible hardware implementations with wide variety of area/speed
trade-offs.

• Originality: It should contain technical breakthroughs to improve security and/or efficiency,
not just a combination of existing techniques.

• Similarity among the Algorithm Family: According to the NIST requirements [38]
(NIST does not intend to select a wholly distinct algorithm for each of the minimally required
message digest sizes), all the hash function instances with hash sizes of 224, 256, 384, and
512 bits should be designed under a consistent design philosophy. Concretely, by using the
same structure and components e.g., S-boxes and matrices, they should provide security
argument and performance evaluation in a unified framework.

7



Table 1.1: AURORA family.
Name max. message message block chaining value hash size

size (bits) size (bits) size (bits) (bits)
AURORA-224 512× (264 − 1) 512 256 224
AURORA-256 512× (264 − 1) 512 256 256
AURORA-384 512× (264 − 1) 512 512 384
AURORA-512 512× (264 − 1) 512 512 512
optional instances
AURORA-224M 512× (264 − 1) 512 512 224
AURORA-256M 512× (264 − 1) 512 512 256

The hash function family AURORA. To practice the design philosophy, we designed the
hash function family AURORA which consists of the algorithms called AURORA-224, AURORA-
256, AURORA-384, AURORA-512, AURORA-224M, and AURORA-256M. AURORA-224,
AURORA-256, AURORA-384 and AURORA-512 support hash sizes of 224, 256, 384, and 512
bits, respectively. AURORA-224M and AURORA-256M support hash sizes of 224 and 256 bits,
respectively. They are optional instances that are designed to have multi-collision resistance by in-
creasing the internal chaining value size (“M” means multi-collision resistance). Every instance of
the AURORA family supports a maximum message length of 512× (264−1) bits, which meets the
minimum acceptability requirement regarding the maximum message length. Table 1.1 presents
the basic properties of the AURORA family.

AURORA-224 and AURORA-256 are constructed from the secure and efficient compression
function using a security-enhanced Merkle-Damg̊ard transform, i.e., the strengthened Merkle-
Damg̊ard transform with the finalization function. The compression function is designed based on
the well-established design techniques for blockciphers, and uses the Davies-Meyer construction.
Since most of existing attacks on hash functions exploited simplicity of message scheduling, we
employ a secure message scheduling, which is a different design philosophy from the MDx family
including SHA-2.

AURORA-384 and AURORA-512 employ a novel domain extension transform called the Double-
Mix Merkle-Damg̊ard (DMMD) transform. The DMMD transform consists of two parallel lines
of the compression functions and the mixing functions inserted at intervals. This domain exten-
sion transform enables an efficient collision-resistant construction for double length hash functions.
Furthermore, the combination of the compression function of AURORA and the DMMD transform
achieves further efficiency by sharing the message scheduling of two compression functions.

The overall structure of AURORA-224M and AURORA-256M is the same as AURORA-
384/512 except constants and the final mixing function. The DMMD transform also opens a new
efficient way of providing multi-collision resistance. By using the DMMD transform, AURORA-
224M and AURORA-256M efficiently achieve multi-collision resistance. As a result, the AURORA
family achieves consistency of the design, because all algorithms use similar 256-bit compression
functions as building blocks.

Moreover, the AURORA family achieves high efficiency on many platforms. In software imple-
mentation on the NIST reference platform (64-bit), AURORA-256 achieves 15.4 cycles/byte and
AURORA-512 achieves 27.4 cycles/byte. Also, AURORA shows good performance across a variety
of platforms, because it uses platform-independent operations. In hardware implementation, AU-
RORA enables a variety of implementations, from high-speed to area-restricted implementations.
Using a 0.13µm CMOS ASIC library, AURORA-256 can be implemented with only 11.1 Kgates in
an area-optimized implementation. In a speed-optimized implementation, AURORA-256 achieves
the highest throughput of 10.4 Gbps. For AURORA-512, the smallest size is 14.6 Kgates and the
highest throughput is 9.1 Gbps.
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Organization of the document. This document is organized as follows: Chapter 2 describes
the specification of the AURORA family. Chapter 3 provides the design rationale. Chapter 4 ex-
plains all aspects of security: security argument and algorithm analysis. Chapter 5 shows efficient
implementation results of AURORA. Chapter 6 describes the usage of AURORA in important
applications. Finally, AURORA’s advantages and limitation are described in Chapter 7.
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Chapter 2

Specification of AURORA

2.1 Notation

We first describe notation, conventions and symbols used throughout this document.

• We use the prefix 0x to denote hexadecimal numbers.

• A bit string x with the suffix, x(n), indicates that x is n bits. This suffix is omitted if there
is no ambiguity.

• For bit strings x and y, x ‖ y or (x, y) is their concatenation.

• For bit strings x and y, x ← y means that the bit string x is updated by the bit string y.
For an nl-bit x, we write (x0 (n), x1 (n), . . . , xl−1 (n)) ← x(nl) to mean that x is divided into
(x0, x1, . . . , xl), where (x0 (n) ‖x1 (n) ‖ · · · ‖xl−1 (n)) = x(nl).

• For a bit string x(n) and an integer l, x≪n l is the l-bit left cyclic shift of x, and x≫n l
is the l-bit right cyclic shift of x.

• For bit strings x0, x1, . . . , xn−1, {xj}0≤j<n is a shorthand for (x0, x1, . . . , xn−1).

• For an integer l, 0l is the l times repetition of zero bits and 1l is the l times repetition of
one bits.

• For a bit string x, x is the bit-wise complement of x.

• For an element of GF(2n) represented as a polynomial xn−1α
n−1 + xn−2α

n−2 + . . .+ x1α+
x0 where α is a root of an irreducible polynomial, xn−1||xn−2|| . . . ||x1||x0 denotes the bit
representation of the polynomial.

11



Following variables and symbols have specific meanings.
M The input message.
Mi The i-th block of the message (after the padding).
m The length of M in blocks (after the padding).
Hi The i-th chaining value.
MSM The Message Scheduling Module.
CPM The Chaining value Processing Module.
BD The Byte Diffusion function.
DR The Data Rotating function.
PROTL The Partial ROTating Left function.
PROTR The Partial ROTating Right function.
Pad The Padding function.
Lenn The Length of the input message in blocks encoded into n bits.
TFn The Truncation Function that outputs n bits.
F0, F1, F2, and F3 The F-Functions.
M0, M1, M2, and M3 The matrices used in the F-functions.
S The S-box.

Following symbols are used for AURORA-224/256.
CF The Compression Function for AURORA-224/256.
MSL and MSR The Message Scheduling functions for CF .
CP The Chaining value Processing function for CF .
FF The Finalization Function for AURORA-224/256.
MSFL and MSFR The Message Scheduling functions for Finalization for FF .
CPF The Chaining value Processing function for Finalization for FF .
CONML,j and CONMR,j The CONstants for MSL, MSR, MSFL, and MSFR.
CONC j The CONstant for CP and CPF .

Following symbols are used for AURORA-384/512.
CF 0,CF 1, . . . ,CF 7 The Compression Functions for AURORA-384/512.
MF The Mixing Function for AURORA-384/512.
MFF The Mixing Function for Finalization for AURORA-384/512.
MSL,s and MSR,s The Message Scheduling functions for CF s (0 ≤ s ≤ 7),

MF (s = 8), and MFF (s = 9).
CPL,s and CPR,s The Chaining value Processing functions for CF s (0 ≤ s ≤ 7),

MF (s = 8), and MFF (s = 9).
CONML,s,j and CONMR,s,j The CONstants used in MSL,s and MSR,s, respectively.
CONCL,s,j and CONCR,s,j The CONstants used in CPL,s and CPR,s, respectively.

Following symbols are used for AURORA-224M/256M.
CFM

0 ,CFM
1 , . . . ,CFM

7 The Compression Functions for AURORA-224M/256M.
MFM The Mixing Function for AURORA-224M/256M.
MFFM The Mixing Function for Finalization for AURORA-224M/256M.
MEM

L,s and MEM
R,s The Message Expansion functions for CFM

s (0 ≤ s ≤ 7),
MFM (s = 8), and MFFM (s = 9).

CPM
L,s and CPM

R,s The Chaining value Processing functions for CFM
s (0 ≤ s ≤ 7),

MFM (s = 8), and MFFM (s = 9).
CONMM

L,s,j and CONMM
R,s,j The CONstants used in MEM

L,s and MEM
R,s, respectively.

CONCM
L,s,j and CONCM

R,s,j The CONstants used in CPM
L,s and CPM

R,s, respectively.
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2.2 Building Blocks

In this section, specifications of the essential building blocks for constructing AURORA algorithms
are described.

2.2.1 Message Scheduling Module: MSM

The message scheduling module, MSM , takes the following two inputs;

• a bit string X(256), and

• a set of bit strings {Yj (32)}0≤j<32.

The output is a set of bit strings {Zj (32)}0≤j<72.
MSM internally uses a byte diffusion function BD : ({0, 1}32)8 → ({0, 1}32)8, which is a

permutation over ({0, 1}32)8 and is defined in Sec. 2.2.3. MSM is parameterized by two functions
F and F ′, where {

F : {0, 1}32 → {0, 1}32,
F ′ : {0, 1}32 → {0, 1}32.

(2.1)

We write MSM [F, F ′] when we emphasize that it is parameterized by functions F and F ′. We
now describe the specification of MSM [F, F ′].

Step 1. Let (X0 (32), X1 (32), . . . , X7 (32))← X(256).

Step 2. Let (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (Y0, Y1, Y2, Y3).

Step 3. Let (Z0, Z1, . . . , Z7)← (X0, X1, . . . , X7).

Step 4. (7 round iterations) The following operations are iterated for i = 1 to 7.




(X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
(X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (Y4i, Y4i+1, Y4i+2, Y4i+3)
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
(Z8i, Z8i+1, . . . , Z8i+7)← (X0, X1, . . . , X7)

Step 5. (8-th round) Then the following operations are executed.




(X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
(X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
(Z64, Z65, . . . , Z71)← (X0, X1, . . . , X7)

Step 6. Finally, the output is {Zj (32)}0≤j<72.

See Fig. 2.1 for an illustration and Fig. 2.13 for a pseudocode.

2.2.2 Chaining Value Processing Module: CPM

The chaining value processing module, CPM , takes the following three inputs;

• a bit string X(256),

• a set of bit strings {Yj (32)}0≤j<144, and

• a set of bit strings {Wj (32)}0≤j<68.
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F FF F

X0 X1 X2 X3 X4 X5 X6 X7

X

F FF F

F FF F

F FF F

F FF F

Y0 Y1 Y2 Y3

Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7

Y4 Y5 Y6 Y7

Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15

Y8 Y9 Y10 Y11

Z16 Z17 Z18 Z19 Z20 Z21 Z22 Z23

Y4i Y4i+1 Y4i+2 Y4i+3

Y28 Y29 Y30 Y31

Z56 Z57 Z58 Z59 Z60 Z61 Z62 Z63

Z64 Z65 Z66 Z67 Z68 Z69 Z70 Z71

Z8i Z8i+1 Z8i+2 Z8i+3 Z8i+4 Z8i+5 Z8i+6 Z8i+7

BD

BD

BD

BD

BD

Figure 2.1: {Zj (32)}0≤j<72 ← MSM [F, F ′](X(256), {Yj (32)}0≤j<32).
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The output is a bit string Z(256).
CPM internally uses a byte diffusion function BD , which is also used in MSM , and is defined

in Sec. 2.2.3. As with MSM , CPM is parameterized by two functions F and F ′ over {0, 1}32, and
we write CPM [F, F ′] when we use functions F and F ′.

We now describe the specification of CPM [F, F ′].

Step 1. Let (X0 (32), X1 (32), . . . , X7 (32))← X(256).

Step 2. Let (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (W0,W1,W2,W3).

Step 3. Let (X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y0, Y1, . . . , Y7).

Step 4. (16 round iterations) The following operations are iterated for i = 1 to 16.




(X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
(X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (W4i,W4i+1,W4i+2,W4i+3)
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
(X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y8i, Y8i+1, . . . , Y8i+7)

Step 5. (17-th round) Then the following operations are executed.




(X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
(X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
(X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y136, Y137, . . . , Y143)

Step 6. Finally, the output is Z(256) ← (X0 (32) ‖X1 (32) ‖ · · · ‖X7 (32)).

See Fig. 2.2 for an illustration and Fig. 2.14 for a pseudocode.

2.2.3 Byte Diffusion Function: BD

The byte diffusion function, BD , takes a bit string (X0 (32), X1 (32), . . . , X7 (32)) as the input, and
outputs the updated bit string (X0 (32), X1 (32), . . . , X7 (32)).

It works as follows.

Step 1. For i = 0, 1, . . . , 7, Xi (32) is divided into a 4-byte sequence as

(x4i (8), x4i+1 (8), x4i+2 (8), x4i+3 (8))← Xi (32),

and (X0 (32), X1 (32), . . . , X7 (32)) is now regarded as a sequence of bytes;

(x0 (8), x1 (8), . . . , x31 (8)) = (X0 (32), X1 (32), . . . , X7 (32)).

Step 2. Next we permute (x0, x1, . . . , x31) according to the permutation π defined in Fig. 2.3,
where the i-th byte xi is moved to the π(i)-th byte. In other words, let x′π(i) = xi for
i = 0, 1, . . . , 31. Then (x′0, x

′
1, . . . , x

′
31) is the result of the permutation. For example,

x′0 = x4, x′1 = x29, and so on.

Step 3. For i = 0, 1, . . . , 7, the 4-byte sequence (x′4i (8), x
′
4i+1 (8), x

′
4i+2 (8), x

′
4i+3 (8)) is concate-

nated to form the updated Xi (32) = (x′4i (8) ‖x′4i+1 (8) ‖x′4i+2 (8) ‖x′4i+3 (8)), and the output
is (X0 (32), X1 (32), . . . , X7 (32)).

See Fig. 2.4 for an illustration and Fig. 2.15 for a pseudocode.
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W4i W4i+1 W4i+2 W4i+3

Y8i Y8i+1 Y8i+2 Y8i+3 Y8i+4 Y8i+5 Y8i+6 Y8i+7

F FF F

X0 X1 X2 X3 X4 X5 X6 X7

F FF F

F FF F

F FF F

Z 0 Z 1 Z 2 Z 3 Z 4 Z 5 Z 6 Z 7

W0 W1 W2 W3

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

W4 W5 W6 W7

Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15

W8 W9 W10 W11

Y16 Y17 Y18 Y19 Y20 Y21 Y22 Y23

W64 W65 W66 W67

Y136 Y137 Y138 Y139 Y140 Y141 Y142 Y143

Z

X

BD

BD

BD

BD

Y128 Y129 Y130 Y131 Y132 Y133 Y134 Y135

F FF F

BD

Figure 2.2: Z(256) ← CPM [F, F ′](X(256), {Yj (32)}0≤j<144, {Wj (32)}0≤j<68).
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(i) 28 29 30 31 0 9 18 27 4 5 6 7 8 17 26 3
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

π(i) 12 13 14 15 16 25 2 11 20 21 22 23 24 1 10 19

Figure 2.3: Definition of the permutation π(·) : {0, 1, . . . , 31} → {0, 1, . . . , 31}.

X0 X1 X2 X3 X4 X5 X6 X7

X0 X1 X2 X3 X4 X5 X6 X7

Figure 2.4: (X0 (32), X1 (32), . . . , X7 (32))← BD(X0 (32), X1 (32), . . . , X7 (32)).

2.2.4 F-Functions: F0, F1, F2, and F3

We use four F-functions, F0, F1, F2, and F3, where they take 32-bit input X as input and produce
32-bit output Y . Each function is used as an instantiation of a parameter functions F or F ′ in
MSM and CPM .

Before defining these F-functions, we first define the S-box S : {0, 1}8 → {0, 1}8, and four 4×4
matrices, M0, M1, M2 and M3.

• The S-box S : x(8) → y(8) is defined as follows.

y =
{
g(f(x)−1) if f(x) 6= 0
g(0) if f(x) = 0 .

The inverse function is performed in GF((24)2) defined by an irreducible polynomial z2 +z+
{1001} for which the underlying GF(24) is defined by an irreducible polynomial z′4 + z′+ 1.
Moreover, f : x(8) → y(8) and g : x(8) → y(8) are affine transformations over GF(2), which
are defined as

f :




y0

y1

y2

y3

y4

y5

y6

y7




=




0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0







x0

x1

x2

x3

x4

x5

x6

x7




+




0
1
1
1
0
1
0
0




, (2.2)
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Table 2.1: S

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. d9 dc d3 69 bd 00 4d eb 02 24 57 c2 b8 5d b7 6d

1. f5 40 37 4e 19 d8 64 62 9d 34 0f 7c ec ce 94 04

2. d1 8a 74 fb e7 87 12 23 b5 5c 1a bb 42 49 18 85

3. 11 46 0d 71 67 8f c6 50 58 fd 4b a4 cd 8e 99 1f

4. ad 63 c9 6b f7 28 9f 65 2f 5f 61 73 3d 8b 0e 1b

5. 33 e0 ac 26 a1 e3 f3 82 83 75 44 90 13 af f0 07

6. 96 21 f8 3f a2 98 9a a3 91 4c 7f 92 97 ea 01 1c

7. 1e 2d 89 39 e6 9c 0a 54 0c 51 6c 43 ae db 53 59

8. a6 f4 06 da e2 78 1d 29 30 e1 35 fc ed bc 47 d5

9. c0 ab cc a8 80 2b 09 b0 93 d4 c5 b3 d0 df a9 aa

a. 7a 36 2a d6 b2 fa e8 b1 a0 68 5a 81 48 08 17 c7

b. fe 76 bf c4 f2 3e 4a 0b 10 14 f1 ef a7 27 e5 c8

c. de 9b 8d 3c 56 d7 8c 60 6a 79 ee a5 31 2e 77 41

d. ff 95 dd 25 3b 55 ca 52 9e 2c 15 4f e4 16 70 7d

e. 72 3a 7b 84 f6 32 86 03 b4 38 6f b9 c1 45 88 e9

f. ba b6 6e 5e be 7e 20 f9 22 66 05 d2 cb c3 cf 5b

and

g :




y0

y1

y2

y3

y4

y5

y6

y7




=




1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0







x0

x1

x2

x3

x4

x5

x6

x7




+




1
0
1
1
0
0
1
0




(2.3)

where (x0(1)||x1(1)||x2(1)||x3(1)||x4(1)||x5(1)||x6(1)||x7(1)) ← x(8) and (y0(1)||y1(1)||y2(1)||y3(1)

||y4(1)||y5(1)||y6(1)||y7(1)) ← y(8). Table 2.1 shows the output values of S.

• The four matrices are defined as follows.

M0 =




0x01 0x02 0x02 0x03
0x03 0x01 0x02 0x02
0x02 0x03 0x01 0x02
0x02 0x02 0x03 0x01


 , (2.4)

M1 =




0x01 0x06 0x08 0x02
0x02 0x01 0x06 0x08
0x08 0x02 0x01 0x06
0x06 0x08 0x02 0x01


 , (2.5)

M2 =




0x03 0x01 0x02 0x02
0x02 0x03 0x01 0x02
0x02 0x02 0x03 0x01
0x01 0x02 0x02 0x03


 , (2.6)

M3 =




0x06 0x08 0x02 0x01
0x01 0x06 0x08 0x02
0x02 0x01 0x06 0x08
0x08 0x02 0x01 0x06


 . (2.7)

18



Multiplications are operated over GF(28) defined by an irreducible polynomial z8 +z4 +z3 +z2 +1.

Now we describe F-functions.

Step 1. Let (x0 (8), x1 (8), x2 (8), x3 (8))← X(32).

Step 2. Let (x0, x1, x2, x3)← (S(x0), S(x1), S(x2), S(x3)).

Step 3. For i ∈ {0, 1, 2, 3}, the output of Fi is Y(32) = (y0 (8) ‖ y1 (8) ‖ y2 (8) ‖ y3 (8)), where



y0

y1

y2

y3


 =Mi




x0

x1

x2

x3


 .

2.2.5 Data Rotating Function: DR

The data rotating function, DR, takes the following two inputs;

• a set of bit strings {Xj (32)}0≤j<72, and

• a set of bit strings {Yj (32)}0≤j<72.

The output is a set of bit strings {Zj (32)}0≤j<144.
DR uses the following two functions;

{
PROTL : ({0, 1}32)8 → ({0, 1}32)8,
PROTR : ({0, 1}32)8 → ({0, 1}32)8,

which we define as

PROTL(X0 (32), X1 (32), . . . , X7 (32)) = (X ′0 (32), X
′
1 (32), . . . , X

′
7 (32)), (2.8)

where X ′i = Xi for i = 0, 2, 4, 5, 6, 7, and (X ′1 ‖X ′3) = (X1 ‖X3)≪64 1.
Similarly, we define

PROTR(X0 (32), X1 (32), . . . , X7 (32)) = (X ′0 (32), X
′
1 (32), . . . , X

′
7 (32)), (2.9)

where X ′i = Xi for i = 0, 2, 4, 5, 6, 7, and (X ′1 ‖X ′3) = (X1 ‖X3)≫64 1.
In other words, they rotate the two words by one bit, where these words are concatenated and

regarded as one 64 bit string.
Now DR works as follows.

Step 1. For inputs {Xj (32)}0≤j<72 and {Yj (32)}0≤j<72, we define {Zj (32)}0≤j<144 by iterating
the following operations for i = 0 to 8.

{
(Z16i, Z16i+1, . . . , Z16i+7)← PROTL(X8i, X8i+1, . . . , X8i+7)
(Z16i+8, Z16i+9, . . . , Z16i+15)← PROTR(Y8i, Y8i+1, . . . , Y8i+7)

Step 2. The output is {Zj (32)}0≤j<144 defined in the above operations.

See Fig. 2.5 for an illustration and Fig. 2.16 for a pseudocode.
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X0 X1 · · · X7 → (Z1 ‖Z3) ← (X1 ‖X3)≪64 1 → Z0 Z1 · · · Z7

Y0 Y1 · · · Y7 → (Z9 ‖Z11) ← (Y1 ‖Y3)≫64 1 → Z8 Z9 · · · Z15

X8 X9 · · · X15 → (Z17 ‖Z19) ← (X9 ‖X11)≪64 1 → Z16 Z17 · · · Z23

Y8 Y9 · · · Y15 → (Z25 ‖Z27) ← (Y9 ‖Y11)≫64 1 → Z24 Z25 · · · Z31

X16 X17 · · · X23 → (Z33 ‖Z35) ← (X17 ‖X19)≪64 1 → Z32 Z33 · · · Z39

Y16 Y17 · · · Y23 → (Z41 ‖Z43) ← (Y17 ‖Y19)≫64 1 → Z40 Z41 · · · Z47

...
...

...
...

...
...

...

X64 X65 · · · X71 → (Z129 ‖Z131) ← (X65 ‖X67)≪64 1 → Z128 Z129 · · · Z135

Y64 Y65 · · · Y71 → (Z137 ‖Z139) ← (Y65 ‖Y67)≫64 1 → Z136 Z137 · · · Z143

Figure 2.5: {Zj (32)}0≤j<144 ← DR({Xj (32)}0≤j<72, {Yj (32)}0≤j<72).
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2.3 Specification of AURORA-256

2.3.1 Overall Structure

AURORA-256 takes the input message of length at most 512 × (264 − 1) = 273 − 512 bits, and
outputs the hash value of 256 bits. It internally uses a compression function CF and a finalization
function FF , where {

CF (·, ·) : {0, 1}256 × {0, 1}512 → {0, 1}256,
FF (·, ·) : {0, 1}256 × {0, 1}512 → {0, 1}256.

The compression function CF is defined in Sec. 2.3.2 and a finalization function FF is defined in
Sec. 2.3.3.

Now AURORA-256 works as follows.

Step 1. The input message M is padded with the following padding function Pad(·);

Pad(M) = M ‖ 1 ‖ 0b ‖Len64, (2.10)

where b is the minimum non-negative integer (possibly zero) such that |M |+ b+ 65 = 512m
for some integer m, and Len64 is an encoding of d|M |/512e in 64-bit string. That is, Len64

is the length of M in blocks, where a partial block counts for one block, and b is the minimal
integer such that the total length of Pad(M) is a multiple of 512 bits. Then Pad(M) is
divided into blocks M0,M1, . . . ,Mm−1 each of length 512 bits, i.e., we let

(M0 (512),M1 (512), . . . ,Mm−1 (512))← Pad(M).

Step 2. Let H0 (256) = 0256, and compute H1 (256),H2 (256), . . . , Hm−1 (256) by iterating

Hi+1 ← CF (Hi,Mi)

for i = 0 to m− 2.

Note that when Pad(M) has one block (i.e., when m = 1 and Pad(M) = M0), then Step 2
is not executed.

Step 3. Finally, let Hm ← FF (Hm−1,Mm−1), and the output is Hm (256).

See Fig. 2.6 for an illustration and Fig. 2.17 for a pseudocode.

CF FFH0

M0 Mm−2 Mm−1

Hm−2 Hm−1

M1 M2

H1 H2 H3

Hm
CF CF CF

Figure 2.6: AURORA-256.

2.3.2 Compression Function: CF

The compression function, CF , takes the chaining value Hi of 256 bits and the input message
block Mi of 512 bits, and outputs the chaining value Hi+1 of 256 bits.
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It internally uses two message scheduling functions MSL and MSR, a data rotating function
DR, and a chaining value processing function CP , where





MSL(·) : {0, 1}256 → ({0, 1}32)72,
MSR(·) : {0, 1}256 → ({0, 1}32)72,
DR(·, ·) : ({0, 1}32)72 × ({0, 1}32)72 → ({0, 1}32)144,
CP(·, ·) : {0, 1}256 × ({0, 1}32)144 → {0, 1}256.

These functions are described below.

Components of CF

• MSL is an instance of MSM described in Sec. 2.2.1, and for any X ∈ {0, 1}256, it is defined
as

MSL(X) = MSM [F0, F1](X, {CONML,j (32)}0≤j<32), (2.11)

where F0 and F1 are F-functions defined in Sec. 2.2.4, and {CONML,j (32)}0≤j<32 is the set
of constants defined in Sec. 2.9.

• Similarly, for any X ∈ {0, 1}256, MSR is defined as

MSR(X) = MSM [F2, F3](X, {CONMR,j (32)}0≤j<32), (2.12)

where F2 and F3 are F-functions defined in Sec. 2.2.4, and {CONMR,j (32)}0≤j<32 is the set
of constants defined in Sec. 2.9.

• DR is the data rotating function defined in Sec. 2.2.5.

• CP is an instance of CPM described in Sec. 2.2.2, and for any X ∈ {0, 1}256 and Y ∈
({0, 1}32)144, it is defined as

CP(X,Y ) = CPM [F1, F0](X,Y, {CONC j (32)}0≤j<68), (2.13)

where F0 and F1 are F-functions defined in Sec. 2.2.4, and {CONC j (32)}0≤j<68 is the set of
constants defined in Sec. 2.9.

Specification of CF

Now we present the specification of CF .

Step 1. Let (ML (256),MR (256))←Mi (512), and let X(256) ← Hi (256).

Step 2. Let {TL,j (32)}0≤j<72 ← MSL(ML (256)).

Step 3. Let {TR,j (32)}0≤j<72 ← MSR(MR (256)).

Step 4. Let {Uj (32)}0≤j≤144 ← DR({TL,j (32)}0≤j<72, {TR,j (32)}0≤j<72).

Step 5. Let Y(256) ← CP(X(256), {Uj (32)}0≤j<144).

Step 6. Finally, the output is Hi+1 (256) ← Y(256) ⊕X(256).

See Fig. 2.7 for an illustration and Fig. 2.18 for a pseudocode.
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MEL

MER

CP

U0 U1 · · · U7

U8 U9 · · · U15

U16 U17 · · · U23

U24 U25 · · · U31

U128 U129 · · · U135

U136 U137 · · · U143

TL,0 TL,1 · · · TL,7

TR,0 TR,1 · · · TR,7

TL,8 TL,9 · · · TL,15

TR,8 TR,9 · · · TR,15

TL,64 TL,65 · · · TL,71

TR,64 TR,65 · · · TR,71

DR

ML MR

Mi

Hi+1

Y

X ← Hi

Figure 2.7: Hi+1 (256) ← CF (Hi (256),Mi (512)).

2.3.3 Finalization Function: FF

The finalization function, FF , is used at the last step of the hash value computation. It takes the
chaining value Hm−1 of 256 bits and the last input message block Mm−1 of 512 bits, and outputs
the final hash value Hm of 256 bits.

FF is structurally equivalent to CF , and the only difference is the constants used in the
components.

FF internally uses message scheduling functions for finalization, MSFL and MSFR, a data
rotating function DR, and a chaining value processing function for finalization, CPF . They have
the following syntax.





MSFL(·) : {0, 1}256 → ({0, 1}32)72,
MSFR(·) : {0, 1}256 → ({0, 1}32)72,
DR(·, ·) : ({0, 1}32)72 × ({0, 1}32)72 → ({0, 1}32)144,
CPF (·, ·) : {0, 1}256 × ({0, 1}32)144 → {0, 1}256.

(2.14)

These functions are described below.

Components of FF

• For any X ∈ {0, 1}256, MSFL is defined as

MSFL(X) = MSM [F0, F1](X, {CONML,j (32)}32≤j<64), (2.15)

where F0 and F1 are F-functions defined in Sec. 2.2.4, and {CONML,j (32)}32≤j<64 is the set
of constants defined in Sec. 2.9.

• For any X ∈ {0, 1}256, MSFR is defined as

MSFR(X) = MSM [F2, F3](X, {CONMR,j (32)}32≤j<64), (2.16)

where F2 and F3 are F-functions defined in Sec. 2.2.4, and {CONMR,j (32)}32≤j<64 is the set
of constants defined in Sec. 2.9.
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• DR is the data rotating function defined in Sec. 2.2.5.

• For any X ∈ {0, 1}256 and Y ∈ ({0, 1}32)144, CPF is defined as

CPF (X,Y ) = CPM [F1, F0](X,Y, {CONC j (32)}68≤j<136), (2.17)

where F0 and F1 are F-functions defined in Sec. 2.2.4, and {CONC j (32)}68≤j<136 is the set
of constants defined in Sec. 2.9.

Specification of FF

Now the finalization function FF works as follows.

Step 1. Let (ML (256),MR (256))←Mm−1 (512), and let X(256) ← Hm−1 (256).

Step 2. Let {TL,j (32)}0≤j<72 ← MSFL(ML (256)).

Step 3. Let {TR,j (32)}0≤j<72 ← MSFR(MR (256)).

Step 4. Let {Uj (32)}0≤j≤144 ← DR({TL,j (32)}0≤j<72, {TR,j (32)}0≤j<72).

Step 5. Let Y(256) ← CPF (X(256), {Uj (32)}0≤j<144).

Step 6. Finally, the output is Hm (256) ← Y(256) ⊕X(256).

See Fig. 2.19 for a pseudocode.
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2.3.4 Alternate Method for Computing CF and FF

The compression function CF and the finalization function FF , components of AURORA-256
hash computation method, are described in an alternative way which requires less memory space
in implementation. Firstly, three component functions RoundC ,RoundML and RoundMR are
defined here for an alternate computation method.

Components RoundC ,RoundML and RoundMR

RoundC (i)(·) : ({0, 1}32)8 → ({0, 1}32)8 is a round function of the structure for CP . Now we
present the computation steps of RoundC (i)(·).

RoundC (i)(X0, X1, . . . , X7) :



(X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
(X0, X2, X4, X6)← (F1(X0), F0(X2), F1(X4), F0(X6))
If i 6= 17, do the following line

(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (CONC 4i,CONC 4i+1,CONC 4i+2,CONC 4i+3)
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
Output (X0, X1, . . . , X7)

Similarly, round functions RoundML and RoundMR for MSL and MSR are defined by replac-
ing F-functions and constants as follows.

RoundM (i)
L (X0, X1, . . . , X7) :




(X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
(X0, X2, X4, X6)← (F0(X0), F1(X2), F0(X4), F1(X6))
If i 6= 8, do the following line

(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (CONML,4i,CONML,4i+1,CONML,4i+2,CONML,4i+3)
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
Output (X0, X1, . . . , X7)

RoundM (i)
R (X0, X1, . . . , X7) :




(X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
(X0, X2, X4, X6)← (F2(X0), F3(X2), F2(X4), F3(X6))
If i 6= 8, do the following line

(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (CONMR,4i,CONMR,4i+1,CONMR,4i+2,CONMR,4i+3)
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
Output (X0, X1, . . . , X7)

Alternative Specification of CF

Now we present an alternative computation method of CF .

Step 1. Initialize input values.
{

(X0(32), X1(32), . . . , X7(32), Y0(32), Y1(32), . . . , Y7(32))←Mi(512)

(Z0(32), Z1(32), . . . , Z7(32))← Hi (256)

Step 2. Add constant values to the initial values.




(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (CONML,0,CONML,1,CONML,2,CONML,3)
(Y1, Y3, Y5, Y7)← (Y1, Y3, Y5, Y7)⊕ (CONMR,0,CONMR,1,CONMR,2,CONMR,3)
(Z1, Z3, Z5, Z7)← (Z1, Z3, Z5, Z7)⊕ (CONC 0,CONC 1,CONC 2,CONC 3)
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Step 3. Do the first round function.




(Z0, Z1, . . . , Z7)← (Z0, Z1, . . . , Z7)⊕ (X0, X
′
1, X2, X

′
3, X4, X5, X6, X7)

(Z0, Z1, . . . , Z7)← RoundC (1)(Z0, Z1, . . . , Z7)
(Z0, Z1, . . . , Z7)← (Z0, Z1, . . . , Z7)⊕ (Y0, Y

′
1 , Y2, Y

′
3 , Y4, Y5, Y6, Y7)

Step 4. The following operations are iterated for j = 1 to 8.




(X0, X1, . . . , X7)← RoundM (j)
L (X0, X1, . . . , X7)

(Y0, Y1, . . . , Y7)← RoundM (j)
R (Y0, Y1, . . . , Y7)

(Z0, Z1, . . . , Z7)← RoundC (2j)(Z0, Z1, . . . , Z7)
(Z0, Z1, . . . , Z7)← (Z0, Z1, . . . , Z7)⊕ (X0, X

′
1, X2, X

′
3, X4, X5, X6, X7)

(Z0, Z1, . . . , Z7)← RoundC (2j+1)(Z0, Z1, . . . , Z7)
(Z0, Z1, . . . , Z7)← (Z0, Z1, . . . , Z7)⊕ (Y0, Y

′
1 , Y2, Y

′
3 , Y4, Y5, Y6, Y7)

Step 5. Finally, the output is Hi+1 (256) ← (Z0, Z1, . . . , Z7)⊕Hi.

In the above specification, X ′1, X
′
3, Y

′
1 and Y ′3 are defined as (X ′1 ‖X ′3) = (X1 ‖X3)≪64 1 and

(Y ′1 ‖Y ′3) = (Y1 ‖Y3)≫64 1.

Alternative Specification of FF

An alternative specification of FF is obtained by replacing constants in the specification of CF as
CONC j ← CONC j+32, CONML,j ← CONML,j+32 and CONMR,j ← CONMR,j+32.
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2.4 Specification of AURORA-224

AURORA-224 takes the input message of length at most 512 × (264 − 1) = 273 − 512 bits, and
outputs the hash value of 224 bits. It uses the same padding function Pad , the compression
function CF , and the finalization function FF as AURORA-256 defined in Sec. 2.3.

The difference is that AURORA-224 uses H0 = 1256 as the initial value, and the output of FF
is truncated to 224 bits by the truncation function TF 224.

The truncation function, TF 224(·) : {0, 1}256 → {0, 1}224, first parses the input Hm (256) into
a sequence of bytes Hm (256) = (m0 (8),m1 (8), . . . ,m31 (8)) and drops m7, m15, m23, and m31 to
produce the 224-bit hash valueH ′m (224) = (m′0 (8),m

′
1 (8), . . . ,m

′
27 (8)). That is, for the 256-bit input

Hm (256) = (m0 (8),m1 (8), . . . ,m31 (8)), the 224-bit output is H ′m (224) = (m′0 (8),m
′
1 (8), . . . ,m

′
27 (8)),

where 



m′i = mi for 0 ≤ i ≤ 6
m′i = mi+1 for 7 ≤ i ≤ 13
m′i = mi+2 for 14 ≤ i ≤ 20
m′i = mi+3 for 21 ≤ i ≤ 27

Now we describe the specification of AURORA-224.

Step 1. The input message M is first padded with Pad(·) in (2.10), and the result of Pad(M) is
divided into blocks M0,M1, . . . ,Mm−1 each of length 512 bits, i.e., let

(M0 (512),M1 (512), . . . ,Mm−1 (512))← Pad(M).

Step 2. Let H0 (256) = 1256, and compute H1 (256),H2 (256), . . . , Hm−1 (256) by iterating

Hi+1 ← CF (Hi,Mi)

for i = 0 to m− 2.

Note that when Pad(M) has one block (i.e., when m = 1 and Pad(M) = M0), then Step 2
is not executed.

Step 3. Let Hm ← FF (Hm−1,Mm−1), and the output is H ′m (224) ← TF 224(Hm (256)).

See Fig. 2.20 for a pseudocode.
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2.5 Specification of AURORA-512

2.5.1 Overall Structure

AURORA-512 takes the input message of length at most 512×(264−1) = 273−512 bits, and outputs
the hash value of 512 bits. It internally uses eight compression functions CF 0,CF 1, . . . ,CF 7, a
mixing function MF , and a mixing function for finalization MFF , where





CF s(·, ·) : {0, 1}512 × {0, 1}512 → {0, 1}512 for s ∈ {0, 1, . . . , 7},
MF (·) : {0, 1}512 → {0, 1}512,
MFF (·) : {0, 1}512 → {0, 1}512.

The compression functions CF 0,CF 1, . . . ,CF 7 are defined in Sec. 2.5.2, the mixing function MF
is defined in Sec. 2.5.3, and the mixing function for finalization MFF is defined in Sec. 2.5.4.

Now we describe the specification of AURORA-512.

Step 1. The input message M is padded with the padding function Pad(·) in (2.10), and Pad(M)
is divided into blocks M0,M1, . . . ,Mm−1 each of length 512 bits, i.e., let

(M0 (512),M1 (512), . . . ,Mm−1 (512))← Pad(M).

Step 2. Now let H0 (512) ← 0512. Then compute H1 (512),H2 (512), . . . ,Hm (512) by iterating the
following operations for i = 0 to m− 1.

{
Hi+1 ← CF i mod 8(Hi,Mi)
if (0 < i < m− 1) ∧ (i mod 8 = 7) then Hi+1 ← MF (Hi+1)

Step 3. Finally, the output is Hm (512) ← MFF (Hm (512)).

See Fig. 2.8 for an illustration and Fig. 2.21 for a pseudocode.

2.5.2 Compression Functions: CF 0,CF 1, . . . ,CF 7

The compression function, CF s, where s ∈ {0, 1, . . . , 7}, takes the chaining value Hi of 512 bits
and the input message block Mi of 512 bits, and outputs the chaining value Hi+1 of 512 bits.

For each s ∈ {0, 1, . . . , 7}, CF s internally uses two message scheduling functions MSL,s and
MSR,s, a data rotating function DR, and two chaining value processing functions CPL,s and
CPR,s, where 




MSL,s(·) : {0, 1}256 → ({0, 1}32)72,
MSR,s(·) : {0, 1}256 → ({0, 1}32)72,
DR(·, ·) : ({0, 1}32)72 × ({0, 1}32)72 → ({0, 1}32)144,
CPL,s(·, ·) : {0, 1}256 × ({0, 1}32)144 → {0, 1}256,
CPR,s(·, ·) : {0, 1}256 × ({0, 1}32)144 → {0, 1}256.

These functions are defined below.

Components of CF 0,CF 1, . . . ,CF 7

• For any X ∈ {0, 1}256, MSL,s is defined as

MSL,s(X) = MSM [F0, F1](X, {CONML,s,j (32)}0≤j<32), (2.18)

where F0 and F1 are F-functions defined in Sec. 2.2.4, and {CONML,s,j (32)}0≤j<32 is the
set of constants defined in Sec. 2.9.
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Figure 2.8: AURORA-512, where l = m mod 8.
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• For any X ∈ {0, 1}256, MSR,s is defined as

MSR,s(X) = MSM [F2, F3](X, {CONMR,s,j (32)}0≤j<32), (2.19)

where F2 and F3 are F-functions defined in Sec. 2.2.4, and {CONMR,s,j (32)}0≤j<32 is the
set of constants defined in Sec. 2.9.

• DR is the data rotating function defined in Sec. 2.2.5.

• For any X ∈ {0, 1}256 and Y ∈ ({0, 1}32)144, CPL,s is defined as

CPL,s(X,Y ) = CPM [F1, F0](X,Y, {CONCL,s,j (32)}0≤j<68), (2.20)

where F0 and F1 are F-functions defined in Sec. 2.2.4, and {CONCL,s,j (32)}0≤j<68 is the set
of constants defined in Sec. 2.9.

• For any X ∈ {0, 1}256 and Y ∈ ({0, 1}32)144, CPR,s is defined as

CPR,s(X,Y ) = CPM [F3, F2](X,Y, {CONCR,s,j (32)}0≤j<68), (2.21)

where F2 and F3 are F-functions defined in Sec. 2.2.4, and {CONCR,s,j (32)}0≤j<68 is the
set of constants defined in Sec. 2.9.

Specification of CF 0,CF 1, . . . ,CF 7

Now the compression function CF s works as follows.

Step 1. Let (ML (256),MR (256))←Mi (512), and (XL (256), XR (256))← Hi (512).

Step 2. Let {TL,j (32)}0≤j<72 ← MSL,s(ML (256)).

Step 3. Let {TR,j (32)}0≤j<72 ← MSR,s(MR (256)).

Step 4. Let {Uj (32)}0≤j≤144 ← DR({TL,j (32)}0≤j<72, {TR,j (32)}0≤j<72).

Step 5. Let YL (256) ← CPL,s(XL (256), {Uj (32)}0≤j<144).

Step 6. Let YR (256) ← CPR,s(XR (256), {Uj (32)}0≤j<144).

Step 7. Finally, the output is Hi+1 (512) ← (YL (256) ⊕XL (256) ‖YR (256) ⊕XR (256)).

See Fig. 2.9 for an illustration and Fig. 2.22 for a pseudocode.

2.5.3 Mixing Function: MF

The mixing function MF is used to mix the chaining values every after eight calls of CF s. It
takes the chaining value Hi of 512 bits and outputs the updated chaining value Hi of 512 bits. It
internally uses two message scheduling functions MSL,8 and MSR,8, a data rotating function DR,
and two chaining value processing functions CPL,8 and CPR,8, where





MSL,8(·) : {0, 1}256 → ({0, 1}32)72,
MSR,8(·) : {0, 1}256 → ({0, 1}32)72,
DR(·, ·) : ({0, 1}32)72 × ({0, 1}32)72 → ({0, 1}32)144,
CPL,8(·, ·) : {0, 1}256 × ({0, 1}32)144 → {0, 1}256,
CPR,8(·, ·) : {0, 1}256 × ({0, 1}32)144 → {0, 1}256.

These functions are defined below.
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Figure 2.9: Hi+1 (512) ← CF s(Hi (512),Mi (512)).

Components of MF

• For any X ∈ {0, 1}256, MSL,8 is defined as

MSL,8(X) = MSM [F0, F1](X, {CONML,8,j (32)}0≤j<32), (2.22)

where F0 and F1 are F-functions defined in Sec. 2.2.4, and {CONML,8,j (32)}0≤j<32 is the
set of constants defined in Sec. 2.9.

• For any X ∈ {0, 1}256, MSR,8 is defined as

MSR,8(X) = MSM [F2, F3](X, {CONMR,8,j (32)}0≤j<32), (2.23)

where F2 and F3 are F-functions defined in Sec. 2.2.4, and {CONMR,8,j (32)}0≤j<32 is the
set of constants defined in Sec. 2.9.

• DR is the data rotating function defined in Sec. 2.2.5.

• For any X ∈ {0, 1}256 and Y ∈ ({0, 1}32)144, CPL,8 is defined as

CPL,8(X,Y ) = CPM [F1, F0](X,Y, {CONCL,8,j (32)}0≤j<68), (2.24)

where F0 and F1 are F-functions defined in Sec. 2.2.4, and {CONCL,8,j (32)}0≤j<68 is the set
of constants defined in Sec. 2.9.

• For any X ∈ {0, 1}256 and Y ∈ ({0, 1}32)144, CPR,8 is defined as

CPR,8(X,Y ) = CPM [F3, F2](X,Y, {CONCR,8,j (32)}0≤j<68), (2.25)

where F2 and F3 are F-functions defined in Sec. 2.2.4, and {CONCR,8,j (32)}0≤j<68 is the
set of constants defined in Sec. 2.9.
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Specification of MF

Now we describe the specification of MF .

Step 1. Let (XL (256), XR (256))← Hi (512).

Step 2. Let {TL,j (32)}0≤j<72 ← MSL,8(XL (256)).

Step 3. Let {TR,j (32)}0≤j<72 ← MSR,8(XR (256)).

Step 4. Let {Uj (32)}0≤j≤144 ← DR({TL,j (32)}0≤j<72, {TR,j (32)}0≤j<72).

Step 5. Let YL (256) ← CPL,8(XL (256), {Uj (32)}0≤j<144).

Step 6. Let YR (256) ← CPR,8(XR (256), {Uj (32)}0≤j<144).

Step 7. Finally, the output is Hi (512) ← (YL (256) ⊕XL (256) ‖YR (256) ⊕XR (256)).

See Fig. 2.10 for an illustration and Fig. 2.23 for a pseudocode.
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Figure 2.10: Hi (512) ← MF (Hi (512)).

2.5.4 Mixing Function for Finalization: MFF

The mixing function for finalization MFF is used at the last computation of the final hash value.
MFF is structurally equivalent to MF , and the only difference is the constants used in the com-
ponents. It takes the last chaining value Hm of 512 bits and outputs the updated value Hm of
512 bits, which is the final hash value. It internally uses two message scheduling functions MSL,9
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and MSR,9, a data rotating function DR, and two chaining value processing functions CPL,9 and
CPR,9, where





MSL,9 : {0, 1}256 × ({0, 1}32)32 → ({0, 1}32)72,
MSR,9 : {0, 1}256 × ({0, 1}32)32 → ({0, 1}32)72,
DR : ({0, 1}32)72 × ({0, 1}32)72 → ({0, 1}32)144,
CPL,9 : {0, 1}256 × ({0, 1}32)144 × ({0, 1}32)68 → {0, 1}256,
CPR,9 : {0, 1}256 × ({0, 1}32)144 × ({0, 1}32)68 → {0, 1}256.

(2.26)

These functions are defined below.

Components of MFF

• For any X ∈ {0, 1}256, MSL,9 is defined as

MSL,9(X) = MSM [F0, F1](X, {CONML,9,j (32)}0≤j<32), (2.27)

where F0 and F1 are F-functions defined in Sec. 2.2.4, and {CONML,9,j (32)}0≤j<32 is the
set of constants defined in Sec. 2.9.

• Similarly, for any X ∈ {0, 1}256, MSR,9 is defined as

MSR,9(X) = MSM [F2, F3](X, {CONMR,9,j (32)}0≤j<32), (2.28)

where F2 and F3 are F-functions defined in Sec. 2.2.4, and {CONMR,9,j (32)}0≤j<32 is the
set of constants defined in Sec. 2.9.

• DR is the data rotating function defined in Sec. 2.2.5.

• For any X ∈ {0, 1}256 and Y ∈ ({0, 1}32)144, CPL,9 is defined as

CPL,9(X,Y ) = CPM [F1, F0](X,Y, {CONCL,9,j (32)}0≤j<68), (2.29)

where F0 and F1 are F-functions defined in Sec. 2.2.4, and {CONCL,9,j (32)}0≤j<68 is the set
of constants defined in Sec. 2.9.

• For any X ∈ {0, 1}256 and Y ∈ ({0, 1}32)144, CPR,9 is defined as

CPR,9(X,Y ) = CPM [F3, F2](X,Y, {CONCR,9,j (32)}0≤j<68), (2.30)

where F2 and F3 are F-functions defined in Sec. 2.2.4, and {CONCR,9,j (32)}0≤j<68 is the
set of constants defined in Sec. 2.9.

Specification of MFF

Now we describe the specification of MFF .

Step 1. Let (XL (256), XR (256))← Hm (512).

Step 2. Let {TL,j (32)}0≤j<72 ← MSL,9(XL (256)).

Step 3. Let {TR,j (32)}0≤j<72 ← MSR,9(XR (256)).

Step 4. Let {Uj (32)}0≤j≤144 ← DR({TL,j (32)}0≤j<72, {TR,j (32)}0≤j<72).

Step 5. Let YL (256) ← CPL,9(XL (256), {Uj (32)}0≤j<144).

Step 6. Let YR (256) ← CPR,9(XR (256), {Uj (32)}0≤j<144).

Step 7. Finally, the output is Hm (512) ← (YL (256) ⊕XL (256) ‖YR (256) ⊕XR (256)).

See Fig. 2.24 for a pseudocode.
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2.6 Specification of AURORA-384

AURORA-384 takes the input message of length at most 512 × (264 − 1) = 273 − 512 bits, and
outputs the hash value of 384 bits. It uses the same padding function Pad , the compression
functions CF 0,CF 1, . . . ,CF 7, the mixing function MF , and the mixing function for finalization
MFF as AURORA-512 defined in Sec. 2.5.

The difference is that AURORA-384 uses H0 = 1512 as the initial value, and the output of
MFF is truncated to 384 bits by the truncation function TF 384.

The truncation function, TF 384(·) : {0, 1}512 → {0, 1}384, first parses the input Hm (512) into a
sequence of bytes Hm (512) = (m0 (8),m1 (8), . . . ,m63 (8)) and drops the following bytes;

m6,m7,m14,m15,m22,m23,m30,m31,m38,m39,m46,m47,m54,m55,m62,m63,

to produce the 384-bit hash value H ′m (384) = (m′0 (8),m
′
1 (8), . . . ,m

′
47 (8)).

That is, for the 512-bit input Hm (512) = (m0 (8),m1 (8), . . . ,m63 (8)), the 384-bit output is
H ′m (384) = (m′0 (8),m

′
1 (8), . . . ,m

′
47 (8)), where





m′i = mi for 0 ≤ i ≤ 5
m′i = mi+2 for 6 ≤ i ≤ 11
m′i = mi+4 for 12 ≤ i ≤ 17
m′i = mi+6 for 18 ≤ i ≤ 23
m′i = mi+8 for 24 ≤ i ≤ 29
m′i = mi+10 for 30 ≤ i ≤ 35
m′i = mi+12 for 36 ≤ i ≤ 41
m′i = mi+14 for 42 ≤ i ≤ 47

Now we describe the specification of AURORA-384.

Step 1. The input message M is first padded with Pad(·) in (2.10), and the result of Pad(M) is
divided into blocks M0,M1, . . . ,Mm−1 each of length 512 bits, i.e., let

(M0 (512),M1 (512), . . . ,Mm−1 (512))← Pad(M).

Step 2. Let H0 (512) = 1512, and compute H1 (512),H2 (512), . . . , Hm (512) by iterating
{
Hi+1 ← CF i mod 8(Hi,Mi)
if (0 < i < m− 1) ∧ (i mod 8 = 7) then Hi+1 ← MF (Hi+1)

for i = 0 to m− 1.

Step 3. Let Hm (512) ← MFF (Hm (512)), and output H ′m (384) ← TF 384(Hm (512)).

See Fig. 2.25 for a pseudocode.
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2.7 Specification of AURORA-256M (optional)

2.7.1 Overall Structure

AURORA-256M takes the input message of length at most 512×(264−1) = 273−512 bits, and out-
puts the hash value of 256 bits. It internally uses eight compression functions CFM

0 ,CFM
1 , . . . ,CFM

7 ,
a mixing function MFM , and a mixing function for finalization MFFM , where





CFM
s (·, ·) : {0, 1}512 × {0, 1}512 → {0, 1}512 for s ∈ {0, 1, . . . , 7},

MFM (·) : {0, 1}512 → {0, 1}512,

MFFM (·) : {0, 1}512 → {0, 1}512.

Basically, AURORA-256M is structurally very similar to AURORA-512. CFM
s and MFM are

the same as CF s and MF , except for constants used in their components, while the output of
MFFM is 256 bits instead of 512 bits for MFF .

The compression functions CFM
0 ,CFM

1 , . . . ,CFM
7 are defined in Sec. 2.7.2, the mixing func-

tion MFM is defined in Sec. 2.7.3, and the mixing function for finalization MFFM is defined in
Sec. 2.7.4.

Now we describe the specification of AURORA-256M.

Step 1. The input message M is padded with the padding function Pad(·) in (2.10). Then
Pad(M) is divided into blocks M0,M1, . . . ,Mm−1 each of length 512 bits, i.e., let

(M0 (512),M1 (512), . . . ,Mm−1 (512))← Pad(M).

Step 2. Now let H0 (512) ← 0512. Then compute H1 (512),H2 (512), . . . ,Hm (512) by iterating the
following operations for i = 0 to m− 1.

{
Hi+1 ← CFM

i mod 8(Hi,Mi)
if (0 < i < m− 1) ∧ (i mod 8 = 7) then Hi+1 ← MFM (Hi+1)

Step 3. Finally, the output is H ′m (256) ← MFFM (Hm (512)).

See Fig. 2.11 for an illustration and Fig. 2.26 for a pseudocode.

2.7.2 Compression Functions: CFM
0 ,CFM

1 , . . . ,CFM
7

The compression function, CFM
s , where s ∈ {0, 1, . . . , 7}, takes the chaining value Hi of 512 bits

and the input message block Mi of 512 bits, and outputs the chaining value Hi+1 of 512 bits.
For each s ∈ {0, 1, . . . , 7}, CFM

s internally uses two message scheduling functions MSML,s and
MSMR,s, a data rotating function DR, and two chaining value processing functions CPM

L,s and
CPM

R,s. These functions are equivalent to the corresponding functions in Sec. 2.5.2 for AURORA-
512, where we use

• CONMM
L,s,j (32) for MSML,s instead of CONML,s,j (32) for MSL,s,

• CONMM
R,s,j (32) for MSMR,s instead of CONMR,s,j (32) for MSR,s,

• CONCM
L,s,j (32) for CPM

L,s instead of CONCL,s,j (32) for CPL,s, and

• CONCM
R,s,j (32) for CPM

R,s instead of CONCR,s,j (32) for CPR,s.
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Figure 2.11: AURORA-256M, where l = m mod 8.
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The constants, CONMM
L,s,j (32), CONMM

R,s,j (32), CONCM
L,s,j (32), and CONCM

R,s,j (32) are all de-
fined in Sec. 2.9. Below, we present the specification, and show the pseudocode in Fig. 2.27 for
completeness.

MSML,s(X) = MSM [F0, F1](X, {CONMM
L,s,j (32)}0≤j<32), (2.31)

MSMR,s(X) = MSM [F2, F3](X, {CONMM
R,s,j (32)}0≤j<32), (2.32)

CPM
L,s(X,Y ) = CPM [F1, F0](X,Y, {CONCM

L,s,j (32)}0≤j<68), (2.33)

CPM
R,s(X,Y ) = CPM [F3, F2](X,Y, {CONCM

R,s,j (32)}0≤j<68). (2.34)

In the above specification, F0, F1, F2 and F3 are F-functions defined in Sec. 2.2.4.

2.7.3 Mixing Function: MFM

The mixing function MFM is used to mix the chaining values every after eight calls of CFM
s . It

takes the chaining value Hi of 512 bits and outputs the updated chaining value Hi of 512 bits. It
internally uses two message scheduling functions MSML,8 and MSMR,8, a data rotating function DR,
and two chaining value processing functions CPM

L,8 and CPM
R,8. These functions are equivalent to

the corresponding functions in Sec. 2.5.3 for AURORA-512, where we use

• CONMM
L,8,j (32) for MSML,8 instead of CONML,8,j (32) for MSL,8,

• CONMM
R,8,j (32) for MSMR,8 instead of CONMR,8,j (32) for MSR,8,

• CONCM
L,8,j (32) for CPM

L,8 instead of CONCL,s,j (32) for CPL,s, and

• CONCM
R,8,j (32) for CPM

R,8 instead of CONCR,8,j (32) for CPR,8.

The constants, CONMM
L,8,j (32), CONMM

R,8,j (32), CONCM
L,8,j (32), and CONCM

R,8,j (32) are all de-
fined in Sec. 2.9. Below, we present the specification, and show the pseudocode in Fig. 2.28 for
completeness.

MSML,8(X) = MSM [F0, F1](X, {CONMM
L,8,j (32)}0≤j<32), (2.35)

MSMR,8(X) = MSM [F2, F3](X, {CONMM
R,8,j (32)}0≤j<32), (2.36)

CPM
L,8(X,Y ) = CPM [F1, F0](X,Y, {CONCM

L,8,j (32)}0≤j<68), (2.37)

CPM
R,8(X,Y ) = CPM [F3, F2](X,Y, {CONCM

R,8,j (32)}0≤j<68). (2.38)

2.7.4 Mixing Function for Finalization: MFFM

The mixing function for finalization MFFM is used at the last computation of the final hash value.
It takes the last chaining value Hm of 512 bits and outputs the final hash value H ′m of 256 bits. It
internally uses a message scheduling function MSMR,9, a data rotating function DR, and a chaining
value processing function CPM

L,9, where





MSMR,9 : {0, 1}256 × ({0, 1}32)32 → ({0, 1}32)72,
DR : ({0, 1}32)72 × ({0, 1}32)72 → ({0, 1}32)144,

CPM
L,9 : {0, 1}256 × ({0, 1}32)144 × ({0, 1}32)68 → {0, 1}256.

(2.39)

These functions are defined below.
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Components of MFFM

• For any X ∈ {0, 1}256, MSML,9 is defined as

MSMR,9(X) = MSM [F2, F3](X, {CONMM
R,9,j (32)}0≤j<32), (2.40)

where F2 and F3 are F-functions defined in Sec. 2.2.4, and {CONMM
R,9,j (32)}0≤j<32 is the

set of constants defined in Sec. 2.9.

• DR is the data rotating function defined in Sec. 2.2.5.

• For any X ∈ {0, 1}256 and Y ∈ ({0, 1}32)144, CPM
L,9 is defined as

CPM
L,9(X,Y ) = CPM [F1, F0](X,Y, {CONCM

L,9,j (32)}0≤j<68), (2.41)

where F0 and F1 are F-functions defined in Sec. 2.2.4, and {CONCM
L,9,j (32)}0≤j<68 is the set

of constants defined in Sec. 2.9.

Specification of MFFM

Now we describe the specification of MFFM .

Step 1. Let (X(256), Y(256))← Hm (512).

Step 2. Let TL,j (32) ← 032 for 0 ≤ j < 72.

Step 3. Let {TR,j (32)}0≤j<72 ← MSMR,9(Y(256)).

Step 4. Let {Uj (32)}0≤j≤144 ← DR({TL,j (32)}0≤j<72, {TR,j (32)}0≤j<72).

Step 5. Let Z(256) ← CPM
L,9(X(256), {Uj (32)}0≤j<144).

Step 6. Finally, the output is H ′m (256) ← Z(256) ⊕X(256).

See Fig. 2.12 for an illustration and Fig. 2.29 for a pseudocode.
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Figure 2.12: H ′m (256) ← MFFM (Hm (512)). Note that TL,j = 032 for 0 ≤ j < 72.
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2.8 Specification of AURORA-224M (optional)

AURORA-224M takes the input message of length at most 512 × (264 − 1) = 273 − 512 bits,
and outputs the hash value of 224 bits. It uses the same padding function Pad , the compression
function CFM

s , the mixing function MFM , and the mixing function for finalization MFFM as
AURORA-256M defined in Sec. 2.7.

The difference is that AURORA-224M uses H0 = 1512 as the initial value, and the output of
MFFM is truncated to 224 bits by the truncation function TF 224 in Sec. 2.4.

Now we describe the specification of AURORA-224M.

Step 1. The input message M is padded with the padding function Pad(·) in (2.10). Then
Pad(M) is divided into blocks M0,M1, . . . ,Mm−1 each of length 512 bits, i.e., let

(M0 (512),M1 (512), . . . ,Mm−1 (512))← Pad(M).

Step 2. Now let H0 (512) ← 1512. Then compute H1 (512),H2 (512), . . . ,Hm (512) by iterating the
following operations for i = 0 to m− 1.

{
Hi+1 ← CFM

i mod 8(Hi,Mi)
if (0 < i < m− 1) ∧ (i mod 8 = 7) then Hi+1 ← MFM (Hi+1)

Step 3. Let H ′m (256) ← MFFM (Hm (512)).

Step 4. Finally, the output is H ′′m (224) ← TF 224(H ′m (256)).

See Fig. 2.30 for a pseudocode.
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2.9 Constant Values

This section describes the generation procedures and the lists of constant values.

2.9.1 Constant Values for AURORA-224/256

Following constants are used in AURORA-224/256;

• {CONML,j}0≤j<32, {CONMR,j}0≤j<32, {CONC j}0≤j<68 for CF , and

• {CONML,j}32≤j<64, {CONMR,j}32≤j<64, {CONC j}68≤j<136 for FF .

Below, we describe the generation process of the constants. The multiplication and the inver-
sion are done in GF(216) with the primitive polynomial x16 +x15 +x13 +x11 +x5 +x4 + 1, which
is 0x1a831.

Step 1. Let IV0, IV1, mask0, mask1, mask2 and mask3 be the following values.





IV0 ← (21/2 − 1)216 = 0x6a09
IV1 ← (31/2 − 1)216 = 0xbb67
mask0 ← (21/3 − 1)216 = 0x428a
mask1 ← (31/3 − 1)216 = 0x7137
mask2 ← (21/5 − 1)216 = 0x2611
mask3 ← (31/5 − 1)216 = 0x3ee8

Step 2. The following operations are iterated for i = 0 to 16.





T0,i ← IV0 · 0x0002i
T1,i ← IV1 · 0x0002−i
CONC 4i ← (T0,i ⊕mask0 ‖T0,i≪16 8)
CONC 4i+1 ← (T1,i ⊕mask1 ‖T1,i≪16 8)
CONC 4i+2 ← (T0,i≪16 8 ‖T0,i ⊕mask2)
CONC 4i+3 ← (T1,i≪16 9 ‖T1,i ⊕mask3)

Step 3. The following operations are iterated for i = 0 to 7.





CONML,4i ← CONC 8i≪32 1
CONML,4i+1 ← CONC 8i+1 ≪32 1
CONML,4i+2 ← CONC 8i+2 ≪32 1
CONML,4i+3 ← CONC 8i+3 ≪32 1
CONMR,4i ← CONC 8i+4 ≫32 1
CONMR,4i+1 ← CONC 8i+5 ≫32 1
CONMR,4i+2 ← CONC 8i+6 ≫32 1
CONMR,4i+3 ← CONC 8i+7 ≫32 1

Step 4. The following operations are iterated for i = 0 to 16.





CONC 4i+68 ← CONC 4i

CONC 4i+69 ← CONC 4i+1

CONC 4i+70 ← CONC 4i+2

CONC 4i+71 ← CONC 4i+3 ⊕ 0x01010101
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Step 5. The following operations are iterated for i = 0 to 7.




CONML,4i+32 ← CONML,4i

CONML,4i+33 ← CONML,4i+1

CONML,4i+34 ← CONML,4i+2

CONML,4i+35 ← CONML,4i+3

CONMR,4i+32 ← CONMR,4i

CONMR,4i+33 ← CONMR,4i+1

CONMR,4i+34 ← CONMR,4i+2

CONMR,4i+35 ← CONMR,4i+3

2.9.2 Constant Values for AURORA-384/512

Following constants are used in AURORA-384/512;

• {CONML,s,j}0≤j<32, {CONMR,s,j}0≤j<32, {CONCL,s,j}0≤j<68, {CONCR,s,j}0≤j<68 for
CF s, where s = 0, 1, . . . , 7,

• {CONML,8,j}0≤j<32, {CONMR,8,j}0≤j<32, {CONCL,8,j}0≤j<68, {CONCR,8,j}0≤j<68 for
MF , and

• {CONML,9,j}0≤j<32, {CONMR,9,j}0≤j<32, {CONCL,9,j}0≤j<68, {CONCR,9,j}0≤j<68 for
MFF .

These constants are generated with the procedure described below.

Step 1. Let IV 512
0 , IV 512

1 , mask512
0 , mask512

1 , mask512
2 and mask512

3 be the following values.




IV 512
0 ← (111/2 − 3)216 = 0x510e

IV 512
1 ← (131/2 − 3)216 = 0x9b05

mask512
0 ← (111/3 − 2)216 = 0x3956

mask512
1 ← (131/3 − 2)216 = 0x59f1

mask512
2 ← (111/5 − 1)216 = 0x9d8a

mask512
3 ← (131/5 − 1)216 = 0xab97

Step 2. The following operations are iterated for i = 0 to 16.




T 512
0,i ← IV 512

0 · 0x0002i
T 512

1,i ← IV 512
1 · 0x0002−i

CONCL,0,4i ← (T 512
0,i ⊕mask512

0 ‖T 512
0,i ≪16 8)

CONCL,0,4i+1 ← (T 512
1,i ⊕mask512

1 ‖T 512
1,i ≪16 8)

CONCL,0,4i+2 ← (T 512
0,i ≪16 8 ‖T 512

0,i ⊕mask512
2 )

CONCL,0,4i+3 ← (T 512
1,i ≪16 9 ‖T 512

1,i ⊕mask512
3 )

Step 3. The following operation is iterated for i = 0 to 67.

CONCR,0,i ← CONCL,0,i≪32 3

Step 4. The following operations are iterated for i = 0 to 7.




CONML,0,4i ← CONCL,0,8i≪32 1
CONML,0,4i+1 ← CONCL,0,8i+1 ≪32 1
CONML,0,4i+2 ← CONCL,0,8i+2 ≪32 1
CONML,0,4i+3 ← CONCL,0,8i+3 ≪32 1
CONMR,0,4i ← CONCL,0,8i+4 ≫32 1
CONMR,0,4i+1 ← CONCL,0,8i+5 ≫32 1
CONMR,0,4i+2 ← CONCL,0,8i+6 ≫32 1
CONMR,0,4i+3 ← CONCL,0,8i+7 ≫32 1
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Step 5. The following operations are iterated for i = 0 to 16 and for s = 1 to 9.




CONCL,s,4i ← CONCL,0,4i

CONCL,s,4i+1 ← CONCL,0,4i+1

CONCL,s,4i+2 ← CONCL,0,4i+2

CONCL,s,4i+3 ← CONCL,0,4i+3 ⊕ CONS s
CONCR,s,4i ← CONCR,0,4i

CONCR,s,4i+1 ← CONCR,0,4i+1

CONCR,s,4i+2 ← CONCR,0,4i+2

CONCR,s,4i+3 ← CONCR,0,4i+3 ⊕ CONS s

Each CONS s is defined as CONS 1 = 0x01010101, CONS 2 = 0x02020202, CONS 3 =
0x03030303, CONS 4 = 0x04040404, CONS 5 = 0x05050505, CONS6 = 0x06060606,
CONS 7 = 0x07070707, CONS 8 = 0x08080808, and CONS 9 = 0x09090909.

Step 6. The following operations are iterated for i = 0 to 7 and for s = 1 to 9.




CONML,s,4i ← CONML,0,4i

CONML,s,4i+1 ← CONML,0,4i+1

CONML,s,4i+2 ← CONML,0,4i+2

CONML,s,4i+3 ← CONML,0,4i+3

CONMR,s,4i ← CONMR,0,4i

CONMR,s,4i+1 ← CONMR,0,4i+1

CONMR,s,4i+2 ← CONMR,0,4i+2

CONMR,s,4i+3 ← CONMR,0,4i+3

2.9.3 Constant Values for AURORA-224M/256M

Following constants are used in AURORA-224M/256M;

• {CONMM
L,s,j}0≤j<32, {CONMM

R,s,j}0≤j<32, {CONCM
L,s,j}0≤j<68, {CONCM

R,s,j}0≤j<68 for
CFM

s , where s = 0, 1, . . . , 7,

• {CONMM
L,8,j}0≤j<32, {CONMM

R,8,j}0≤j<32, {CONCM
L,8,j}0≤j<68, {CONCM

R,8,j}0≤j<68 for
MFM , and

• {CONMM
R,9,j}0≤j<32, {CONCM

L,9,j}0≤j<68 for MFFM .

These constants are generated with almost the same procedure as AURORA-384/512.

Step 1. Let IVM0 , IVM1 , maskM0 , maskM1 , maskM2 and maskM3 be the following values.




IVM0 ← (51/2 − 2)216 = 0x3c6e
IVM1 ← (71/2 − 2)216 = 0xa54f
maskM0 ← (51/3 − 1)216 = 0xb5c0
maskM1 ← (71/3 − 1)216 = 0xe9b5
maskM2 ← (51/5 − 1)216 = 0x6135
maskM3 ← (71/5 − 1)216 = 0x79cc

Step 2. The following operations are iterated for i = 0 to 16.




TM0,i ← IVM0 · 0x0002i
TM1,i ← IVM1 · 0x0002−i
CONCM

L,0,4i ← (TM0,i ⊕maskM0 ‖TM0,i ≪16 8)
CONCM

L,0,4i+1 ← (TM1,i ⊕maskM1 ‖TM1,i ≪16 8)
CONCM

L,0,4i+2 ← (TM0,i ≪16 8 ‖TM0,i ⊕maskM2 )
CONCM

L,0,4i+3 ← (TM1,i ≪16 9 ‖TM1,i ⊕maskM3 )
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Step 3. The following operation is iterated for i = 0 to 67.

CONCM
R,0,i ← CONCM

L,0,i≪32 3

Step 4. The following operations are iterated for i = 0 to 7.




CONMM
L,0,4i ← CONCM

L,0,8i≪32 1
CONMM

L,0,4i+1 ← CONCM
L,0,8i+1 ≪32 1

CONMM
L,0,4i+2 ← CONCM

L,0,8i+2 ≪32 1
CONMM

L,0,4i+3 ← CONCM
L,0,8i+3 ≪32 1

CONMM
R,0,4i ← CONCM

L,0,8i+4 ≫32 1
CONMM

R,0,4i+1 ← CONCM
L,0,8i+5 ≫32 1

CONMM
R,0,4i+2 ← CONCM

L,0,8i+6 ≫32 1
CONMM

R,0,4i+3 ← CONCM
L,0,8i+7 ≫32 1

Step 5. The following operations are iterated for i = 0 to 16 and for s = 1 to 9.




CONCM
L,s,4i ← CONCM

L,0,4i

CONCM
L,s,4i+1 ← CONCM

L,0,4i+1

CONCM
L,s,4i+2 ← CONCM

L,0,4i+2

CONCM
L,s,4i+3 ← CONCM

L,0,4i+3 ⊕ CONS s
CONCM

R,s,4i ← CONCM
R,0,4i

CONCM
R,s,4i+1 ← CONCM

R,0,4i+1

CONCM
R,s,4i+2 ← CONCM

R,0,4i+2

CONCM
R,s,4i+3 ← CONCM

R,0,4i+3 ⊕ CONS s

Each CONS s is the same as in AURORA-384/512.

Step 6. The following operations are iterated for i = 0 to 7 and for s = 1 to 9.




CONMM
L,s,4i ← CONMM

L,0,4i

CONMM
L,s,4i+1 ← CONMM

L,0,4i+1

CONMM
L,s,4i+2 ← CONMM

L,0,4i+2

CONMM
L,s,4i+3 ← CONMM

L,0,4i+3

CONMM
R,s,4i ← CONMM

R,0,4i

CONMM
R,s,4i+1 ← CONMM

R,0,4i+1

CONMM
R,s,4i+2 ← CONMM

R,0,4i+2

CONMM
R,s,4i+3 ← CONMM

R,0,4i+3

2.9.4 List of Constant Values

The following tables offer the list of the constant values for reference. These described values are
all required constant values for AURORA-224/256 CF , AURORA-384/512 CF0 and AURORA-
224M/256M CFM0 . In the following tables, the constant values are arranged from the left to the
right.

Constant Values for AURORA-224/256 CF {CONCj}0≤j<68

2883f695 ca509844 096a4c18 cf76858f 9698ed2b f89c5476 12d4f203 5713b743

429feaff e1fa326f 15002604 9b21ae25 42a0d5ff ed498163 2a00263b fd38a296

42deabff 3f08c0b1 54002645 7e9c70d7 422257ff 8230f80c a80026b9 0fe6cdef

43daaffe dcac6452 50012741 375b9373 402a5ffd f3e22a7d a00224b1 ab05bc3d

47cabffa e4458d6a 40052351 e52aab9a 480a7ff5 3b8e46b5 800a2c91 72957451

578affea 8073bb0e 00153311 89e2cfac 688affd5 09955d87 002a0c11 44f1464a

168affab 4d66aec3 00547211 a27802b9 ea8aff57 bb07cf35 00a88e11 6194f4d8

babbce07 142fe79a 31f8de20 30ca5bf0 1ad9aca7 43bb73cd 53587e42 18650c64

f22c594f 6871b9e6 a6b096b7 8c3227ae
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Constant Values for AURORA-224/256 CF {CONML,j}0≤j<32

5107ed2a 94a13089 12d49830 9eed0b1f 853fd5fe c3f464df 2a004c08 36435c4b

85bd57fe 7e118162 a8004c8a fd38e1ae 87b55ffc b958c8a5 a0024e82 6eb726e6

8f957ff4 c88b1ad5 800a46a2 ca555735 af15ffd4 00e7761d 002a6622 13c59f59

2d15ff56 9acd5d86 00a8e422 44f00573 75779c0f 285fcf34 63f1bc40 6194b7e0

Constant Values for AURORA-224/256 CF {CONMR,j}0≤j<32

cb4c7695 7c4e2a3b 896a7901 ab89dba1 a1506aff f6a4c0b1 9500131d 7e9c514b

a1112bff 41187c06 d400135c 87f366f7 a0152ffe f9f1153e d0011258 d582de1e

a4053ffa 9dc7235a c0051648 b94aba28 b4457fea 84caaec3 80150608 2278a325

f5457fab dd83e79a 80544708 30ca7a6c 8d6cd653 a1ddb9e6 29ac3f21 0c328632

Constant Values for AURORA-384/512 CF0 {CONCL,0,j}0≤j<68

6858f1ae c2f4fa64 0e51cc84 0b363092 9b4ae35d c06b6566 1ca23f96 3533320d

d55ff613 153c32b3 09ec7183 9a99e75a 4975dc8f ab8f810d 2370eda9 fde459e9

d910b91f 20cec086 46e07dcc 7ef2d2a8 51eb4297 b1767817 bd68f537 0fd14310

e82c852e f9aaa45f 7ad14cf0 b7400bcc 33933af5 ddc4ca7b c50a974f 6b082fa2

2cdc75ea cff3fd69 8a158800 052c3d95 1242ebd4 12f0feb4 142bb69e 0296e096

6f7ed7a9 a869670e 2856cba2 31e35a0f 9506af53 213d3387 50ac31da 98f1d35b

c9c76e0f 659799c3 91f06d1b cc7897f1 7045ecb6 47c2cce1 1349d499 663cb5a4

ab70d96d 82f0fe24 26920fac 03b67096 b52b8273 e0696746 7d8c11f7 3173120f

899d344f 053d33a3 cbb02d41 98b9f75b

Constant Values for AURORA-384/512 CF0 {CONCR,0,j}0≤j<68

42c78d73 17a7d326 728e6420 59b18490 da571aec 035b2b36 e511fcb0 a9999069

aaffb09e a9e19598 4f638c18 d4cf3ad4 4baee47a 5c7c086d 1b876d49 ef22cf4f

c885c8fe 06760431 3703ee62 f7969543 8f5a14ba 8bb3c0bd eb47a9bd 7e8a1880

41642977 cd5522ff d68a6783 ba005e65 9c99d7a9 ee2653de 2854ba7e 58417d13

66e3af51 7f9feb4e 50ac4004 2961eca8 92175ea0 9787f5a0 a15db4f0 14b704b0

7bf6bd4b 434b3875 42b65d11 8f1ad079 a8357a9c 09e99c39 85618ed2 c78e9adc

4e3b707e 2cbcce1b 8f8368dc 63c4bf8e 822f65b3 3e16670a 9a4ea4c8 31e5ad23

5b86cb6d 1787f124 34907d61 1db384b0 a95c139d 034b3a37 ec608fbb 8b989079

4ce9a27c 29e99d18 5d816a0e c5cfbadc

Constant Values for AURORA-384/512 CF0 {CONML,0,j}0≤j<32

d0b1e35c 85e9f4c9 1ca39908 166c6124 aabfec27 2a786566 13d8e306 3533ceb5

b221723f 419d810c 8dc0fb98 fde5a550 d0590a5d f35548bf f5a299e0 6e801799

59b8ebd4 9fe7fad3 142b1001 0a587b2a defdaf52 50d2ce1d 50ad9744 63c6b41e

938edc1f cb2f3386 23e0da37 98f12fe3 56e1b2db 05e1fc49 4d241f58 076ce12c

Constant Values for AURORA-384/512 CF0 {CONMR,0,j}0≤j<32

cda571ae 6035b2b3 0e511fcb 9a999906 a4baee47 d5c7c086 91b876d4 fef22cf4

a8f5a14b d8bb3c0b deb47a9b 07e8a188 99c99d7a eee2653d e2854ba7 358417d1

092175ea 09787f5a 0a15db4f 014b704b ca8357a9 909e99c3 285618ed cc78e9ad

3822f65b a3e16670 89a4ea4c 331e5ad2 da95c139 7034b3a3 bec608fb 98b98907

Constant Values for AURORA-224M/256M CFM0 {CONCML,0,j}0≤j<68

89ae91c3 4cfab05a 6e3c5d5b 9f4adc83 cd1c2387 6f0a4079 dc7819e9 7f0dff73

4478470e 7ef2b868 b8f1908d 8f2eee8b fe81beb4 760e4460 414b2a74 773fe677

23427d69 72703a64 8296f7b7 8b37e209 30f5ca7a 704f0566 3585e400 f533e036

179ba45d a54802b3 5ba2c36e fa993531 59477813 1bd3990d 87ec8db2 cde48baa

c4ffc08e 9086cc86 3f71100a 66f200ff 57be811d 01347e17 7ee2834b 03d1914d

d90d3293 49eda75f cd6c0df8 b140d994 6c5a6526 b999d3af 9ad9b8af 58a029e0

aec5fae4 c1a3e9d7 051b7a30 2c5051da 83caf5c9 fdbef4eb 0a36573f 16286dc7

d9d4eb93 37a8e221 146c0d21 3bbca7d1 6de8d727 52a3e944 28d8b91d 2d76c2da

ada19ee7 b43e74a2 61187954 16bb2447
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Constant Values for AURORA-224M/256M CFM0 {CONCMR,0,j}0≤j<68

4d748e1c 67d582d2 71e2eadb fa56e41c 68e11c3e 785203cb e3c0cf4e f86ffb9b

23c23872 f795c343 c78c846d 7977745c f40df5a7 b0722303 0a5953a2 b9ff33bb

1a13eb49 9381d323 14b7bdbc 59bf104c 87ae53d1 82782b33 ac2f2001 a99f01b7

bcdd22e8 2a40159d dd161b72 d4c9a98f ca3bc09a de9cc868 3f646d94 6f245d56

27fe0476 84366434 fb888051 379007fb bdf408ea 09a3f0b8 f7141a5b 1e8c8a68

c869949e 4f6d3afa 6b606fc6 8a06cca5 62d32933 ccce9d7d d6cdc57c c5014f02

762fd725 0d1f4ebe 28dbd180 62828ed1 1e57ae4c edf7a75f 51b2b9f8 b1436e38

cea75c9e bd471109 a3606908 dde53e89 6f46b93b 951f4a22 46c5c8e9 6bb616d1

6d0cf73d a1f3a515 08c3caa3 b5d92238

Constant Values for AURORA-224M/256M CFM0 {CONMM
L,0,j}0≤j<32

135d2387 99f560b4 dc78bab6 3e95b907 88f08e1c fde570d0 71e3211b 1e5ddd17

4684fad2 e4e074c8 052def6f 166fc413 2f3748ba 4a900567 b74586dc f5326a63

89ff811d 210d990d 7ee22014 cde401fe b21a6527 93db4ebe 9ad81bf1 6281b329

5d8bf5c9 8347d3af 0a36f460 58a0a3b4 b3a9d727 6f51c442 28d81a42 77794fa2

Constant Values for AURORA-224M/256M CFM0 {CONMM
R,0,j}0≤j<32

e68e11c3 b785203c ee3c0cf4 bf86ffb9 7f40df5a 3b072230 20a5953a bb9ff33b

187ae53d 382782b3 1ac2f200 7a99f01b aca3bc09 8de9cc86 43f646d9 66f245d5

abdf408e 809a3f0b bf7141a5 81e8c8a6 362d3293 dccce9d7 cd6cdc57 2c5014f0

c1e57ae4 fedf7a75 851b2b9f 8b1436e3 b6f46b93 2951f4a2 946c5c8e 16bb616d
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2.10 Pseudocodes

The pseudocodes of the specifications of the AURORA family are described in this section.

MSM [F, F ′](X(256), {Yj (32)}0≤j<32)
000 (X0, X1, . . . , X7)← X
010 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (Y0, Y1, Y2, Y3)
020 (Z0, Z1, . . . , Z7)← (X0, X1, . . . , X7)
030 for i← 1 to 7 do
040 (X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
050 (X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
060 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (Y4i, Y4i+1, Y4i+2, Y4i+3)
070 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
080 (Z8i, Z8i+1, . . . , Z8i+7)← (X0, X1, . . . , X7)
090 (X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
100 (X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
110 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
120 (Z64, Z65, . . . , Z71)← (X0, X1, . . . , X7)
130 return {Zj (32)}0≤j<72

Figure 2.13: A pseudocode of MSM : {0, 1}256 × ({0, 1}32)32 → ({0, 1}32)72. BD is defined in
Sec. 2.2.3. F and F ′ are functions over {0, 1}32.

CPM [F, F ′](X(256), {Yj (32)}0≤j<144, {Wj (32)}0≤j<68)
000 (X0, X1, . . . , X7)← X
010 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (W0,W1,W2,W3)
020 (X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y0, Y1, . . . , Y7)
030 for i← 1 to 16 do
040 (X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
050 (X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
060 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (W4i,W4i+1,W4i+2,W4i+3)
070 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
080 (X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y8i, Y8i+1, . . . , Y8i+7)
090 (X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
100 (X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
110 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
120 (X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y136, Y137, . . . , Y143)
130 Z ← (X0 ‖X1 ‖ · · · ‖X7)
140 return Z(256)

Figure 2.14: A pseudocode of CPM : {0, 1}256 × ({0, 1}32)144 × ({0, 1}32)68 → {0, 1}256. BD is
defined in Sec. 2.2.3. F and F ′ are functions over {0, 1}32.
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BD(X0 (32), X1 (32), . . . , X7 (32))
000 for i← 0 to 7 do
010 (x4i, x4i+1, x4i+2, x4i+3)← Xi

020 for i← 0 to 31 do
030 x′π(i) ← xi
040 for i← 0 to 7 do
050 Xi ← (x′4i ‖x′4i+1 ‖x′4i+2 ‖x′4i+3)
060 return (X0 (32), X1 (32), . . . , X7 (32))

Figure 2.15: A pseudocode of BD : ({0, 1}32)8 → ({0, 1}32)8. π is defined in Fig. 2.3.

DR({Xj (32)}0≤j<72, {Yj (32)}0≤j<72)
000 for i← 0 to 8 do
010 (Z16i, Z16i+1, . . . , Z16i+7)← PROTL(X8i, X8i+1, . . . , X8i+7)
020 (Z16i+8, Z16i+9, . . . , Z16i+15)← PROTR(Y8i, Y8i+1, . . . , Y8i+7)
030 return {Zj (32)}0≤j<144

Figure 2.16: A pseudocode of DR : ({0, 1}32)72 × ({0, 1}32)72 → ({0, 1}32)144. The functions
PROTL and PROTR are defined in (2.8) and (2.9), respectively.

AURORA-256(M)
000 (M0,M1, . . . ,Mm−1)← Pad(M)
010 H0 ← 0256

020 for i← 0 to m− 2 do
030 Hi+1 ← CF (Hi,Mi)
040 Hm ← FF (Hm−1,Mm−1)
050 return Hm (256)

Figure 2.17: A pseudocode of AURORA-256. The padding function, Pad(·), is defined in (2.10),
CF is defined in Sec. 2.3.2, and FF is defined in Sec. 2.3.3.

CF (Hi (256),Mi (512))
000 (ML,MR)←Mi

010 X ← Hi

020 {TL,j}0≤j<72 ← MSL(ML)
030 {TR,j}0≤j<72 ← MSR(MR)
040 {Uj}0≤j≤144 ← DR({TL,j}0≤j<72, {TR,j}0≤j<72)
050 Y ← CP(X, {Uj}0≤j<144)
060 Hi+1 ← Y ⊕X
070 return Hi+1 (256)

Figure 2.18: A pseudocode of CF : {0, 1}256 × {0, 1}512 → {0, 1}256. MSL, MSR, DR, and CP
are defined in (2.11), (2.12), Sec. 2.2.5, and in (2.13), respectively.
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FF (Hm−1 (256),Mm−1 (256))
000 (ML,MR)←Mm−1

010 X ← Hm−1

020 {TL,j}0≤j<72 ← MSFL(ML)
030 {TR,j}0≤j<72 ← MSFR(MR)
040 {Uj}0≤j≤144 ← DR({TL,j}0≤j<72, {TR,j}0≤j<72)
050 Y ← CPF (X, {Uj}0≤j<144)
060 Hm ← Y ⊕X
070 return Hm (256)

Figure 2.19: A pseudocode of FF : {0, 1}256 × {0, 1}512 → {0, 1}256. MSFL, MSFR, DR, and
CPF are defined in (2.15), (2.16), Sec. 2.2.5, and in (2.17), respectively.

AURORA-224(M)
000 (M0,M1, . . . ,Mm−1)← Pad(M)
010 H0 ← 1256

020 for i← 0 to m− 2 do
030 Hi+1 ← CF (Hi,Mi)
040 Hm ← FF (Hm−1,Mm−1)
050 H ′m ← TF 224(Hm)
060 return H ′m (224)

Figure 2.20: A pseudocode of AURORA-224. Pad , CF , and FF are the same as AURORA-256
and defined in Sec. 2.3.

AURORA-512(M)
000 (M0,M1, . . . ,Mm−1)← Pad(M)
010 H0 ← 0512

020 for i← 0 to m− 1 do
030 Hi+1 ← CF i mod 8(Hi,Mi)
040 if (0 < i < m− 1) ∧ (i mod 8 = 7) then
050 Hi+1 ← MF (Hi+1)
060 Hm ← MFF (Hm)
070 return Hm (512)

Figure 2.21: A pseudocode of AURORA-512. The padding function, Pad(·), is defined in (2.10),
CF s is defined in Sec. 2.5.2, MF is defined in Sec. 2.5.3, and MFF is defined in Sec. 2.5.4.
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CF s(Hi (512),Mi (512))
000 (ML,MR)←Mi

010 (XL, XR)← Hi

020 {TL,j}0≤j<72 ← MSL,s(ML)
030 {TR,j}0≤j<72 ← MSR,s(MR)
040 {Uj}0≤j≤144 ← DR({TL,j}0≤j<72, {TR,j}0≤j<72)
050 YL ← CPL,s(XL, {Uj}0≤j<144)
060 YR ← CPR,s(XR, {Uj}0≤j<144)
070 ZL ← YL ⊕XL

080 ZR ← YR ⊕XR

090 Hi+1 ← (ZL, ZR)
100 return Hi+1 (512)

Figure 2.22: A pseudocode of CF s : {0, 1}512×{0, 1}512 → {0, 1}512. MSL,s, MSR,s, DR, CPL,s,
and CPR,s are defined in (2.18), (2.19), Sec. 2.2.5, (2.20), and in (2.21), respectively.

MF (Hi (512))
000 (XL, XR)← Hi

010 {TL,j}0≤j<72 ← MSL,8(XL)
020 {TR,j}0≤j<72 ← MSR,8(XR)
030 {Uj}0≤j≤144 ← DR({TL,j}0≤j<72, {TR,j}0≤j<72)
040 YL ← CPL,8(XL, {Uj}0≤j<144)
050 YR ← CPR,8(XR, {Uj}0≤j<144)
060 ZL ← YL ⊕XL

070 ZR ← YR ⊕XR

080 Hi ← (ZL, ZR)
090 return Hi (512)

Figure 2.23: A pseudocode of MF : {0, 1}512 → {0, 1}512. MSL,8, MSR,8, DR, CPL,8, and CPR,8

are defined in (2.22), (2.23), Sec. 2.2.5, (2.24), and in (2.25), respectively.

MFF (Hm (512))
000 (XL, XR)← Hm

010 {TL,j}0≤j<72 ← MSL,9(XL)
020 {TR,j}0≤j<72 ← MSR,9(XR)
030 {Uj}0≤j≤144 ← DR({TL,j}0≤j<72, {TR,j}0≤j<72)
040 YL ← CPL,9(XL, {Uj}0≤j<144)
050 YR ← CPR,9(XR, {Uj}0≤j<144)
060 ZL ← YL ⊕XL

070 ZR ← YR ⊕XR

080 Hm ← (ZL, ZR)
090 return Hm (512)

Figure 2.24: A pseudocode of MFF : {0, 1}512 → {0, 1}512. MSL,9, MSR,9, DR, CPL,9, and
CPR,9 are defined in (2.27), (2.28), Sec. 2.2.5, (2.29), and in (2.30), respectively.
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AURORA-384(M)
000 (M0,M1, . . . ,Mm−1)← Pad(M)
010 H0 ← 1512

020 for i← 0 to m− 1 do
030 Hi+1 ← CF i mod 8(Hi,Mi)
040 if (0 < i < m− 1) ∧ (i mod 8 = 7) then
050 Hi+1 ← MF (Hi+1)
060 Hm ← MFF (Hm)
070 H ′m ← TF 384(Hm)
080 return H ′m (384)

Figure 2.25: A pseudocode of AURORA-384. Pad , CF s, MF , and MFF are the same as
AURORA-512 and defined in Sec. 2.5.

AURORA-256M(M)
000 (M0,M1, . . . ,Mm−1)← Pad(M)
010 H0 ← 0512

020 for i← 0 to m− 1 do
030 Hi+1 ← CFM

i mod 8(Hi,Mi)
040 if (0 < i < m− 1) ∧ (i mod 8 = 7) then
050 Hi+1 ← MFM (Hi+1)
060 H ′m ← MFFM (Hm)
070 return H ′m (256)

Figure 2.26: A pseudocode of AURORA-256M. The padding function, Pad(·), is defined in (2.10),
CFM

s is defined in Sec. 2.7.2, MFM is defined in Sec. 2.7.3, and MFFM is defined in Sec. 2.7.4.

CFM
s (Hi (512),Mi (512))

000 (ML,MR)←Mi

010 (XL, XR)← Hi

020 {TL,j}0≤j<72 ← MSML,s(ML)
030 {TR,j}0≤j<72 ← MSMR,s(MR)
040 {Uj}0≤j≤144 ← DR({TL,j}0≤j<72, {TR,j}0≤j<72)
050 YL ← CPM

L,s(XL, {Uj}0≤j<144)
060 YR ← CPM

R,s(XR, {Uj}0≤j<144)
070 ZL ← YL ⊕XL

080 ZR ← YR ⊕XR

090 Hi+1 ← (ZL, ZR)
100 return Hi+1 (512)

Figure 2.27: A pseudocode of CFM
s : {0, 1}512×{0, 1}512 → {0, 1}512. MSML,s, MSMR,s, DR, CPM

L,s,
and CPM

R,s are defined in (2.31), (2.32), Sec. 2.2.5, (2.33), and in (2.34), respectively.
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MFM (Hi (512))
000 (XL, XR)← Hi

010 {TL,j}0≤j<72 ← MSML,8(XL)
020 {TR,j}0≤j<72 ← MSMR,8(XR)
030 {Uj}0≤j≤144 ← DR({TL,j}0≤j<72, {TR,j}0≤j<72)
040 YL ← CPM

L,8(XL, {Uj}0≤j<144)
050 YR ← CPM

R,8(XR, {Uj}0≤j<144)
060 ZL ← YL ⊕XL

070 ZR ← YR ⊕XR

080 Hi ← (ZL, ZR)
090 return Hi (512)

Figure 2.28: A pseudocode of MFM : {0, 1}512 → {0, 1}512. MSML,8, MSMR,8, DR, CPM
L,8, and

CPM
R,8 are defined in (2.35), (2.36), Sec. 2.2.5, (2.37), and in (2.38), respectively.

MFFM (Hm (512))
000 (X,Y )← Hm

010 for j ← 0 to 71 do
020 TL,j ← 032

030 {TR,j}0≤j<72 ← MSMR,9(Y )
040 {Uj}0≤j≤144 ← DR({TL,j}0≤j<72, {TR,j}0≤j<72)
050 Z ← CPM

L,9(X, {Uj}0≤j<144)
060 H ′m ← Z ⊕X
070 return H ′m (256)

Figure 2.29: A pseudocode of MFFM : {0, 1}512 → {0, 1}512. MSMR,9, DR, and CPM
L,9 are defined

in (2.40), Sec. 2.2.5, and in (2.41), respectively.

AURORA-224M(M)
000 (M0,M1, . . . ,Mm−1)← Pad(M)
010 H0 ← 1512

020 for i← 0 to m− 1 do
030 Hi+1 ← CFM

i mod 8(Hi,Mi)
040 if (0 < i < m− 1) ∧ (i mod 8 = 7) then
050 Hi+1 ← MFM (Hi+1)
060 H ′m ← MFFM (Hm)
070 H ′′m ← TF 224(H ′m)
080 return H ′′m (256)

Figure 2.30: A pseudocode of AURORA-224M. The padding function, Pad(·), is defined in (2.10),
CFM

s is defined in Sec. 2.7.2, MFM is defined in Sec. 2.7.3, and MFFM is defined in Sec. 2.7.4.
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2.11 AURORA Examples

This section describes example vectors of the AURORA hash algorithm family. Table 2.2 gives
three examples for the messages M1,M2, and M3 below for each hash function.

Let the message M1 be the 24-bit ASCII string “abc”, which is equivalent to the following
binary string:

01100001 01100010 01100011.

Let the message M2 be the 448-bit ASCII string

“abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq”.

Let the message M3 be the binary-coded form of the ASCII string which consists of 1,000,000
repetitions of the character “a”.
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Table 2.2: AURORA Examples.

AURORA-256
Message Hash Value
M1 3e0c31c1 8ef5c404 33844fac 2d4acdf4 9e390962 797821a4 9e3553f3 8189917e
M2 21621069 e64ec45a eccf140a d881c684 44c30081 32a3b2d0 e9a1d961 d2dc034f
M3 ec8cede6 3fd1bd3b c6de6702 b6ed25e8 d80f5efa b5433912 446aaefc db026b5f

AURORA-224
Message Hash Value
M1 50fddc1c 77601c2c c01cc258 eccc6a10 37646235 860da74b 6e0280af
M2 05874948 064d42ca e0ffa686 45034160 8d571731 f9581ca8 b8ea1890
M3 7977bc32 b66d7b05 6b215153 1545668d 5f3d1c6c 42a48334 5ab31f70

AURORA-512
Message Hash Value
M1 6a4cf6d1 18619abd e8c920d5 9806e483 cc90616f 8d1b4db6 b98abab7 00c4ec47

85eaa639 45bb65e1 52df4901 a1c36f78 9c587f09 49c8e76a a0a8d7de 20f8aa0e
M2 cbf432c3 01103535 f0cf0027 efe2b0c6 2046414e 6128ec83 bbd0bccf 7425f908

a5061438 6da57647 8f91cd42 1f4a0015 7b2fa527 d81328e7 76be3262 7352ef0c
M3 577e573e d9bfbc31 a80bcea8 2d1e4441 89d31fe0 7cda57d3 a2c8ad00 9800feae

431e456b 85184399 5c12c5e6 6a7f7272 55880d11 375f08a1 4841fb96 86d390e4

AURORA-384
Message Hash Value
M1 cb7a330f 33ab55ec 98698f49 4ace5996 3dcec8e2 bdfa12f1 f8db22fc 18b5591e

a02f267e bdaf1639 49133bf3 b59e94c2
M2 f16bb878 ddee85ef 51994078 61aeee1c b23c63fb 6498f38d fbecf41e cf24805f

8b28f018 656610f1 26ad1400 0a3f3ab6
M3 c18722f8 d9e0fe10 de818d07 e8b66734 c23532ee 7d1d9968 18f60ab0 3950b416

cb89c086 8263eb84 3b4264d1 44c2180d

AURORA-256M
Message Hash Value
M1 46c5dba6 cfdc333b 7cfb4242 8fe59345 a0882acb c10c5694 9c248501 b156c457
M2 3c3353d9 67d30005 de02cae6 e3b1a205 11e3b3a8 3d9048ee 5694df40 2bdc9588
M3 cd97a51f 79cb722a c2c33a46 62502b10 a13565b4 1f662699 11b9b438 f9fe81fb

AURORA-224M
Message Hash Value
M1 d64eaa68 02030670 3e7d6301 74bd2f9b 607a1e95 b6620ba2 5d2a3248
M2 587879d0 6eebb1da 87b6de94 06e0dbdf 24e5fbad d98bc0dd 1257ad26
M3 c78f12a4 308821ab 3d312fdb 9dff6408 5496a44e a1aeebd5 a734166c
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Chapter 3

Design Rationale of AURORA

This chapter describes the design rationale of the AURORA hash function family. The design of
AURORA is divided in two parts: one is a part of fixed-input-length compression functions and
the other is a domain extension transform which utilizes the compression function as a building
block to implement a variable-input-length hash function. In this chapter, we describe the design
rationale in a top-down approach, from the domain extension to the compression function for
AURORA-256, AURORA-512, and AURORA-256M, then explain the components in the common
building blocks.

We describe the design rationale for AURORA-256, AURORA-512, and AURORA-256M as
representatives of the AURORA family. However, the design rationale of AURORA-256 is ap-
plicable to AURORA-224, because AURORA-224 is the same as AURORA-256 except for the
initial value and truncation of final hash value. Similarly, the design rationale of AURORA-512
is applicable to AURORA-384, and also the design rationale of AURORA-256M is applicable to
AURORA-224M.

3.1 AURORA-256

3.1.1 Domain Extension

AURORA-256 adopts the strengthened Merkle-Damg̊ard (sMD) transform with a finalization
function which is different from the compression function in the transform. The domain extension
of AURORA-256 is shown in the above of Fig. 3.1.

Most of widely-used hash functions employ the strengthened Merkle-Damg̊ard transform be-
cause it has been proven to be collision-resistance preserving [35, 15]: if the compression function
is collision-resistant (CR), then so is the hash function. However, current usages of hash functions
make it obvious that CR no longer suffices for the security goal for hash functions, because hash
functions are also often used to instantiate random oracles. Coron et al. [12] introduced a formal
definition of “behaving like a random oracle” for hash functions using the indifferentiability frame-
work, which was originally proposed by Maurer et al. [32]. They showed that the sMD transform
is not indifferentiable from a random oracle.

We chose the sMD transform with the finalization function, because it preserves CR and indif-
ferentiability (PRO) of the underlying compression function. The collision resistance preservation
(CR-Pr) is ensured by the MD strengthening [35]: the input message is padded by the padding
function Pad(·) in AURORA. CR-Pr can be proven similarly to the proof in [35]. The pseudoran-
dom oracle preservation (PRO-Pr) is due to the finalization function. The finalization function
works to envelope the internal MD iteration as the enveloping mechanism used in NMAC/HMAC
constructions [5] and the EMD transform [6]. PRO-Pr can be easily proven from Lemma 5.1 in
[6], which is core to the proof that EMD is PRO-Pr.

The structure of the finalization function FF , is the same as the structure of the compression
function CF , except for the constants. By using a different set of constants between them, it
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Figure 3.1: AURORA-256: Domain extension and compression function.

is expected that FF behaves as a different function from CF . On the other hand, FF can be
efficiently implemented by using the same module as CF .

3.1.2 Compression Function

The AURORA-256 compression function CF uses two message scheduling functions MSL and
MSR, and the chaining value processing function CP , as shown in the below of Fig. 3.1. It is
regarded as the Davies-Meyer construction [34, p.340]. We chose this construction because it is
possible to input longer message than the chaining value to achieve higher throughput, while in the
Matyas-Meyer-Oseas and Miyaguchi-Preneel constructions [34, p.340] the message and chaining
value must be the same size. Although the Davies-Meyer construction has a negative property of
easily found fixed points [36, 45, 17], we attached more importance to achieving higher throughput.

Considering recent attacks on hash functions exploiting simple message scheduling [55, 56, 57],
we chose to design more secure (and more heavy) message schedule like Whirlpool [3] and DASH [8].
The message scheduling function (MSL, MSR) was designed based on a 256-bit permutation us-
ing blockcipher design techniques. To achieve both of security and speed, the message scheduling
function is composed of two 256-bit functions, not one 512-bit function, because generally con-
structing a 512-bit ideal primitive requires more than double cost of constructing a 256-bit ideal
primitive.

The finalization function FF uses two message scheduling functions MSFL and MSFR and
the chaining value processing function CPF . The structure of the finalization function FF is the
same as the structure of the compression function CF except for the constants.

3.2 AURORA-512

3.2.1 Domain Extension – Double-Mix Merkle-Damg̊ard transform

In order to achieve an efficient 512-bit hash function, a novel domain extension transform, called the
Double-Mix Merkle-Damg̊ard (DMMD) transform is introduced. The DMMD transform consists
of double lines of the compression functions and the mixing functions inserted every 8 blocks
as Fig. 3.2 shows. The DMMD transform enables an efficient collision-resistant construction for
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Figure 3.2: Double-Mix Merkle-Damg̊ard (DMMD) transform.

double length hash functions1, which outputs 2n-bit hash values using component functions with
n-bit output. We adopted this approach because (1) the same compression function can be used in
all the AURORA family, and because (2) the message scheduling functions can be shared between
two compression functions by making the best use of the structure of the AURORA compression
function.

The previous designs for secure (i.e., collision-resistant) double length hash functions include
Lucks’ double-pipe hash [31] and Hirose’s construction [25]. The double-pipe hash uses two com-
pression functions f : {0, 1}2n × {0, 1}m → {0, 1}n in parallel, i.e., f has a 2n-bit chaining value
and an m-bit message as inputs and an n-bit chaining value as output. Similarly, Hirose’s con-
struction uses a secure blockcipher E : {0, 1}n+m × {0, 1}n → {0, 1}n twice, i.e., E is an n-bit
blockcipher with (n + m)-bit key length. The DMMD transform consists of smaller compression
functions fi : {0, 1}n × {0, 1}m → {0, 1}n with an n-bit chaining value and an m-bit message
as inputs and an n-bit chaining value as output. Generally, it is possible to construct a secure
component with small input size at lower cost than a component with large input size. Although
the DMMD transform additionally requires the mixing function which is called only once every
eight blocks, this approach can achieve an efficient double length hash function.

Security of the DMMD transform. The collision resistance (CR), preimage resistance (Pre),
and second preimage resistance (Sec) of the DMMD transform can be achieved with appropriate
assumptions on the underlying components. (See Sec. 4.2.2 for the proofs).

The pseudorandom oracle preservation (PRO-Pr) can be proven similarly to the EMD [6,
Lemma 5.1]. The PRO-Pr of the DMMD transform is due to the mixing function for finalization
MFF , which works to envelope the internal iterated compression functions.

Shared message scheduling between two 256-bit compression functions. In AURORA-
512, the compression function CF i consists of two compression functions with 256-bit output
(denoted as “256-bit compression functions”) fi and fi+1, as shown in Fig. 3.2. Each of the
256-bit compression function consists of two message scheduling functions and the chaining value
processing function. Since the message scheduling can be shared between two 256-bit compression
functions, the cost of the 512-bit compression function CF i is reduced to less than double cost of
the 256-bit compression function. In the case of AURORA-512, the cost for the message schedul-
ing functions/the chaining value processing function ratio is about 1:1, the 512-bit compression
function CF i can be implemented with about 1.5 times cost of the 256-bit compression function.

Mixing functions. In the DMMD transform, the mixing function is inserted at intervals. The
purpose of the mixing function is to mix the two n-bit chaining values. The number of blocks the
mixing function is inserted effects the security bound. In AURORA-512, the mixing function MF
is inserted every 8 blocks.

1They are also called as double-block-length (DBL) hash functions, but we use the term “double length hash
functions” following [37].
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Figure 3.3: AURORA-512: Domain extension and compression function.

Independent instances of compression functions. In order to prove that the DMMD trans-
form has collision resistance, each of the (eight) compression functions between the mixing func-
tions is expected to behave as an independent function. To specify independent compression
function instances with limited implementation cost, we use the same components for all compres-
sion functions with different sets of constants. For the security proofs of the DMMD transform,
see Sec. 4.2.2.

3.2.2 Compression Function

As described in Sec. 3.2.1, the compression function for AURORA-512 is designed based on two
256-bit compression functions, which are the same as the AURORA-256 compression function.
One 256-bit compression function consists of two message scheduling functions MSL and MSR
and a chaining value processing function CPL; the other 256-bit compression function consists of
two message scheduling functions MSL and MSR and a chaining value processing function CPR.
By sharing the message scheduling functions, the AURORA-512 compression function CF consists
of MSL, MSR, CPL and CPR (See the below left in Fig. 3.3).

The mixing function MF and the mixing function for finalization MFF have a different interface
from the compression function CF i. In other words, there is no message input to MF and MFF ,
and the chaining value is input to both of MS and CP (See the below middle and right in
Fig. 3.3). However, MF and MFF are composed of the same components as the compression
function CF i, except for constants. This enables us to use the same module in software and
hardware implementations.

3.3 AURORA-256M

3.3.1 Domain Extension

AURORA-256M, which outputs 256-bit hash values, is an optional instance with multi-collision
resistance (“M” means multi-collision resistance). AURORA-256M has the same structure as
AURORA-512 except the final mixing function. Therefore, it has the almost same performance
as AURORA-512, which is only about 50% additional cost to AURORA-256, i.e. less than double
cost of AURORA-256. Thus AURORA-256M achieves multi-collision resistance very efficiently.
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It is known that many iterated hash functions including the Merkle-Damg̊ard construction and
its variants allow Joux’s multi-collision attack [26], Kelsey-Schneier’s second preimage attack [28],
and Kelsey-Kohno’s Herding attack [27]. In particular, Kelsey-Schneier’s second preimage attack
on n-bit iterated hash functions finds a second preimage for a message of 2k message blocks with
about 2n−k+1 work. (Note that the security requirement for SHA-3 regarding the second preimage
resistance is approximately n−k bits for any message shorter than 2k bits, so we understand that
multi-collision resistance is not a mandatory requirement.)

We include AURORA-224M/256M in the AURORA family for the use in the applications
where multi-collision resistance and/or second-preimage resistance for extremely long messages is
considered important. However, we submit AURORA-224/256 as the formal SHA-3 candidates
and submit AURORA-224M/256M as optional instances, because (1) AURORA-224/256 are more
efficient than AURORA-224M/256M and (2) NIST encourages submitters to submit only one
algorithm for each hash size.

3.3.2 Compression Function

The compression function and mixing function for AURORA-256M are the same as those for
AURORA-512 except for the constants. Thus AURORA-256M can be implemented with the
same module as AURORA-512.

3.4 Components and Constants

The compression functions of all the AURORA family are composed of the common building
blocks: the message scheduling module (MSM ) and the chaining value processing module (CPM ).
This section shows the design rationale of the components and constants used in MSM and CPM .

3.4.1 AURORA Structure

As is known in blockcipher design and analysis, security evaluation tends to be difficult or infeasible
as the block/input size increases, because the required computational complexity increases. To
facilitate ease of analysis, design choice of the structure and its components is important. We chose
a 256-bit permutation based on byte-oriented operations to construct the structure of both of the
message scheduling module (MSM ) and the chaining value processing module (CPM ). We call it
the AURORA structure, which is shown in Fig. 3.4. It can be regarded as a 256-bit generalized
modified-Feistel structure with byte-wise diffusion layers.

The AURORA structure itself is novel, but follows the traditional blockcipher design strategy.
There are four 32-bit-to-32-bit F-functions in parallel in one round. The F-function consists of a
substitution layer and a permutation layer, where four S-boxes and a 4× 4 matrix multiplication
in GF(28) are operated. Details are written in Sec. 3.4.2. In order that the hash function family
AURORA has desirable security properties including the collision resistance and indifferentiability,
it should be guaranteed that the underlying compression function has no differential paths with
high probability that are exploitable in collision-finding attacks or distinguishing attacks. The
compression function consists of an underlying 256-bit blockcipher with two message scheduling.
Since it is computationally infeasible to estimate maximum differential probability of the overall
compression function CF : {0, 1}256×{0, 1}512 → {0, 1}256, we designed so that each of the 256-bit
permutation from the 256-bit input X to the 256-bit output Z in MSM and CPM (For X and
Z, see Sec. 2.2.1 and 2.2.2) has no differential paths with high probability under the assumption
that “subkeys” (i.e., constants in MSM and expanded messages in CPM ) are independent and
uniformly distributed.

In choosing the structure, we estimated maximum differential characteristic probability ob-
tained by the number of active-S-boxes and compared estimated performance given by the num-
ber of required F-functions among several candidates including the generalized Feistel structure
and its variants. As a result of consideration discussed in Sec. 4.2.3, we chose 8-round AURORA
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structure for the message scheduling module and 17-round AURORA structure for the chaining
value processing module.

Since (1) AURORA’s message scheduling module is designed to be secure by itself by using
blockcipher design techniques and (2) AURORA is designed based on byte-oriented operations
including the S-box and the matrices in GF(28) while SHA-2 makes use of logical operations on
32-bit or 64-bit words, the design strategy is significantly different from SHA-2. Therefore, it
is expected that a possibly successful attack on SHA-2 is unlikely to be applicable to AURORA.
Furthermore, byte-oriented operations including the S-box and the matrices in GF(28) are suitable
for a wide range of platforms including 8-bit processors and constrained hardware implementations.

Byte Diffusion function BD. The byte diffusion function BD is adopted to enhance diffusion
and to avoid preserving wordwise structure. For example, there exist 16-round trivial impossible
differential paths in the AURORA structure if BD is replaced with the traditional wordwise per-
mutation. (C.f. There exist 17-round trivial impossible differential paths in the 8-line generalized
Feistel structure.) On the other hand, full bytewise diffusion has the downsides including a de-
crease in efficiency and a reduction of effect by the DSM techniques (For details, see the design
rationale of diffusion matrices described later in this section). We examined the effect of several
diffusion layer variants on differential characteristic probability in determining the diffusion layer.
As a result, we chose the diffusion function where half of the data (i.e. the 2nd, 4th, 6th and 8th
words) are input to the bytewise diffusion which is the same as the ShiftRow transformation in
the AES [22], and the other half (i.e. the 1st, 3rd, 5th, and 7th words) are input to the 32-bit
wordwise permutation similar to that in the generalized Feistel structure.

3.4.2 F-function

The F-function consists of the substitution layer and the permutation layer, where four non-
linear byte substitutions and a 4 × 4 maximum distance separable (MDS) matrix multiplication
over GF(28) are operated. The byte substitutions (S-boxes) provide confusion and the matrix
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multiplication provides local diffusion in the F-function. The structure and the components of
the F-function are chosen to facilitate analysis and to utilize the well-established techniques for
blockcipher design and analysis.

AURORA uses four F-Functions F0, F1, F2, and F3 with different diffusion matrices. Each
of the building blocks CPL, CPR, MEL, and MER uses two different F-Functions chosen out of
four (See Table 3.2). We chose four diffusion matrices so that the Diffusion Switching Mechanism
(DSM) [52] works to improve the security against differential and linear attacks.

The details of selection of the S-box and the diffusion matrices are described below.

S-box

We explain the design criteria and procedure for choosing the S-box of AURORA to show that
there exist no “trap-doors” in it. The design criteria of the S-box are:

• Immunity against known attacks, and

• Suitability for efficient hardware/software implementations.

To meet the design criteria above, we chose a byte substitution based on an inversion in the finite
field GF(28), because it provides optimal security in terms of maximum differential/linear prob-
ability etc. and optimization techniques for hardware/software implementations are well studied.
The AES [22] also employs an S-box based on an inversion in the finite field GF(28), however,
there is room for both of area/throughput optimizations in hardware implementations. Thus we
decided to choose a different S-box from the AES.

The S-box of AURORA is based on the inversion in the finite field GF((24)2) defined by
an irreducible polynomial z2 + z + {1001} for which the underlying GF(24) is defined by an
irreducible polynomial z′4+z′+1. These irreducible polynomials were chosen to optimize hardware
implementations. The S-box is constructed by the following three steps:

Step 1. Apply the affine transformation over GF(2): f ,

Step 2. Take the inverse in GF((24)2), then

Step 3. Apply the affine transformation over GF(2): g.

The affine transformations f and g are applied to hide the algebraic structure (such as alge-
braically simple relations) in the finite field GF((24)2). Considering implementation cost, the
affine transformations f and g were chosen so that the following conditions are satisfied.

Let f(x) = Mf ·x+cf and g(x) = Mg ·x+cg, where Mf and Mg are non-singular 8×8 matrices
in GF(2), and cf and cg are constant vectors in GF(2) (See (2.2) and (2.3) in Sec. 2.2.4).

Conditions on Mf and Mg

1. The Hamming weight of each row/column vector of Mf and Mg is 2 or less.

2. The Hamming distance between the 1st and the 5th row vectors in Mf and Mg is 1. Similarly,
the Hamming distance between the 2nd and the 6th row vectors, the 3rd and the 7th row
vectors, and the 4th and the 8th row vectors in Mf and Mg is 1, respectively.

3. The Hamming weights of the 5th, 6th, 7th, and 8th row vectors are 1.

The numbers of candidates of Mf and Mg satisfying the conditions above are 40320, respectively.
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Table 3.1: Security properties of the S-box.

maximum differential probability 2−6

maximum linear probability 2−6

minimum degree of Boolean polynomial 7
minimum number of terms in polynomial over GF(28) 252
length of cycle 255

Conditions on cf and cg

1. The Hamming weight of cf and cg is 4.

2. The Hamming weight of the upper 4-bit of cf and cg is 3, and the Hamming weight of the
lower 4-bit of cf and cg is 1, respectively.

The number of candidates of cf and cg satisfying the conditions above is 17, respectively.

From all the possible 40320 × 40320 × 17 × 17 combinations of (Mf , Mg, cf , cg) satisfying
the conditions above, we chose the first candidate that satisfied the security properties2 shown in
Table 3.1 according to the pseudocode below:

Select S-box (i.e. Mf , Mg, cf , cg)
000 for Mf index ← 0 to 40319 do
010 for Mgindex ← 40319 down to 0 do
020 for cf index ← 0 to 16 do
030 for cgindex ← 0 to 16 do
040 if satisfy the conditions in Table 3.1

return (Mf index, Mgindex, cf index, cgindex).

Note that cf and cg are indexed by the values which can be represented as the concatenation of
its individual bit values of the 8-bit vector in the order, respectively. Mf and Mg are indexed
by the values which are generated by concatenating 8 8-bit row vectors from the most significant
byte, respectively.

As a result, the candidate with Mf index= 0, Mgindex= 40319, cf index= 2, cgindex= 5 was
chosen.

Diffusion Matrices

AURORA employs four different diffusion matricesM0, M1, M2 andM3 to improve the immu-
nity against differential (and linear) attacks by using the Diffusion Switching Mechanism (DSM).
The concept of DSM was first proposed by Shirai and Shibutani in 2004, followed by extended
works [51, 52, 53, 50] and used in the blockcipher CLEFIA [54]. This technique is applicable to the
AURORA structure. By using plural different matrices, we can prevent difference cancellations
which can happen at the XOR operations in the structure. As a result the guaranteed number of
active S-boxes is increased.

Let B8(M) be the branch number of matrix M , which is defined as follows:

Definition 1 Let x ∈ {0, 1}pn represented as x = [x0x1 . . . xp−1] where xi ∈ {0, 1}n, then the
bundle weight wn(x) is defined as wn(x) = ]{xi|xi 6= 0}. Let P : {0, 1}pn → {0, 1}qn. The branch
number of P is defined as

Bn(P ) = min
a 6=0
{wn(a) + wn(P (a))} .

2The condition for the minimum number of terms in polynomial over GF(28) was not included in the selection
conditions in the pseudocode, but the selected candidate satisfied this property.
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Table 3.2: Diffusion matrices used in each building block of AURORA family.

AURORA-224/256 building block MSL MSR CP
F-function F0,F1 F2,F3 F1,F0

matrices M0,M1 M2,M3 M1,M0

AURORA-384/512 building block MSL MSR CPL CPR

F-function F0,F1 F2,F3 F1,F0 F3,F2

matrices M0,M1 M2,M3 M1,M0 M3,M2

AURORA-224M/256M building block MSML MSMR CPM
L CPM

R

F-function F0,F1 F2,F3 F1,F0 F3,F2

matrices M0,M1 M2,M3 M1,M0 M3,M2

To utilize the DSM technique, AURORA uses two pairs of diffusion matrices (M0, M1), and
(M2, M3) which satisfy the conditions I and II. Note that the elements of the matrices are in
GF(28).

Condition I (MDS)

B8(M0) = B8(M1) = 5 (3.1)
B8(M2) = B8(M3) = 5 (3.2)

This is an optimal branch number for 4 × 4 matrices in GF(28), and the matrices satisfying this
condition are called the MDS matrices.

Besides the condition I, the branch numbers of the concatenated matricesM0|M1, tM−1
0 | tM−1

1 ,
M2|M3, and tM−1

2 | tM−1
3 should be optimal.

Condition II (DSM)

B8(M0|M1) = B8( tM−1
0 | tM−1

1 ) = 5 (3.3)
B8(M2|M3) = B8( tM−1

2 | tM−1
3 ) = 5 (3.4)

We call the pair of the matrices satisfying these conditions the “DSM pair”. (M0,M1) is a DSM
pair.

Actually, (M0, M1) is chosen according to (3.1) and (3.3). M2 and M3 are obtained by
cyclically shifting each column ofM0 andM1, respectively. It is easily proven that (M2, M3) is
a DSM pair, i.e. (3.2) and (3.4) hold for M2 and M3 obtained in this way. Moreover, it is also
shown that (M0, M3) and (M1, M2) are DSM pairs. Therefore, the DSM technique works not
only in the single building block but also across the building blocks such as CP , MSL, and MSR.
Table 3.2 shows diffusion matrices used in each building block of the AURORA family.

Since there are huge number of matrices satisfying the conditions I and II, we chose (M0,M1)
considering implementation cost. Among circulant matrices with a low Hamming weight, we chose
the pair of matrices which can be implemented efficiently in hardware, i.e., to minimize the XOR
gate counts and the maximum delay. We chose x8 + x4 + x3 + x2 + 1 as the primitive polynomial
in representing for the field GF(28). M2 and M3 are obtained by cyclically shifting each column
of M0 and M1, respectively.

3.4.3 Data Rotating Function

The outputs from the message scheduling functions are XORed to the data in the chaining value
processing function via the data rotating function DR. The function DR is adopted to incorpo-
rate bitwise operations with minimum additional cost and to prevent generic attacks exploiting
byte/word-wise structure of the chaining value processing function and the message scheduling
functions.
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Table 3.3: Initial values and parameters in constant generation procedure.

AURORA-256 IV0 = (21/2 − 1)216 mask0 = (21/3 − 1)216 mask2 = (21/5 − 1)216

IV1 = (31/2 − 1)216 mask1 = (31/3 − 1)216 mask3 = (31/5 − 1)216

AURORA-256M IV0 = (51/2 − 2)216 mask0 = (51/3 − 1)216 mask2 = (51/5 − 1)216

IV1 = (71/2 − 2)216 mask1 = (71/3 − 1)216 mask3 = (71/5 − 1)216

AURORA-512 IV0 = (111/2 − 3)216 mask0 = (111/3 − 2)216 mask2 = (111/5 − 1)216

IV1 = (131/2 − 3)216 mask1 = (131/3 − 2)216 mask3 = (131/5 − 1)216

3.4.4 Truncation Functions

In AURORA-224, the 224-bit hash value is obtained by truncating the 256-bit final hash value
by the truncation function TF 224. Similarly, in AURORA-384, the 384-bit hash value is obtained
by truncating the 512-bit final hash value by the truncation function TF 384. These truncation
functions do not just drop right-most bytes like the SHA-2 family, but drop bytes equally from
every 64-bit block to make effective use of all the outputs from the F -functions in the last round
of the compression function. See also Sec. 4.2.3.

3.4.5 Constant Generation

Role of Constants in the AURORA family

AURORA-224/256, AURORA-384/512, and AURORA-224M/256M, use 3, 4, and 4 sets of con-
stants, respectively, as listed in Sec. 2.9.4.

The constants play an important role in security. They are used to make each module of CPM
and MSM an independent function. In AURORA-256, it is expected that the finalization function
FF behaves as an different function from the compression function CF by using a different set
of constants. In AURORA-512 and AURORA-256M, it is expected that each of 8 compression
functions, the mixing function, and the mixing function for finalization behaves an independent
function from each other by using a different set of constants.

Design of Constant Generation Procedure

In AURORA, all the constants can be generated by the constant generation procedure. This
strategy is more advantageous than storing all the independent random constants, especially in
constrained environments where available memory is limited.

The constant generation procedure is designed to generate pseudorandom sequences by using
simple operations such as XOR, bit-rotations, and so on. The design strategy is similar to the
constant generator of the blockcipher CLEFIA [54]. The four 32-bit constant values used in each
module of CPM and MSM in one round are generated from 16-bit values T0,i and T1,i. T0,i and
T1,i are updated every round by multiplication by x or x−1 in GF(216), respectively, where the
primitive polynomial is x16 +x15 +x13 +x11 +x5 +x4 + 1 (=0x1a831). This primitive polynomial
is also used in CLEFIA, and the choosing strategy is as follows. The lower 16-bit value is defined
as 0xa831= (= 3

√
101 − 4) · 216). “101” is the smallest prime number satisfying the primitive

polynomial condition in this form.
We set IV0 and IV1 (the initial values of T0,i and T1,i) and the masking values mask0, mask1,

mask2, mask3 as the first 16 bits of the fractional parts of the square/cube/fifth roots of prime
numbers 2, 3, 5, 7, 11, and 13 as Table 3.3 shows. This is an evidence that there is no trapdoor
in these values.

We selected the amounts of rotation (r0, r1, r2, r3) = (8, 8, 8, 9) in Step 2 in the generation
procedure of the constants, which is described in Sec. 2.9, by checking whether the generated
sequences pass the statistical test suites: the mono bit test, the poker test, and the runs test [18].
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In details, we checked the pseudorandomness of the first 20,000 bits of the following sequences for
all the combinations of the amounts of rotation (r0, r1, r2, r3):

• Sequences of constants for AURORA-224/256
- a sequence generated based on T0,i: {CONC 4i,CONC 4i+2,CONC 4i+4, . . . }
- a sequence generated based on T1,i: {CONC 4i+1,CONC 4i+3,CONC 4i+5, . . . }
- a sequence of constants used in CP : {CONC 4i,CONC 4i+1,CONC 4i+2, . . . }
- a sequence of constants used in MSL: {CONML,4i,CONML,4i+1,CONML,4i+2, . . . }
- a sequence of constants used in MSR: {CONMR,4i,CONMR,4i+1,CONMR,4i+2, . . . }
- a sequence of constants used in CPF : {CONC 4i+68,CONC 4i+69,CONC 4i+70, . . . }
- a sequence of constants used in MSFL: {CONML,4i+32,CONML,4i+33,CONML,4i+34, . . . }
- a sequence of constants used in MSFR: {CONMR,4i+32,CONMR,4i+33,CONMR,4i+34, . . . }
• Sequences of constants for AURORA-384/512 in a similar manner to above
• Sequences of constants for AURORA-224M/256M in a similar manner to above

From the combinations of (r0, r1, r2, r3) which passed all the statistical tests above, we selected
considering software implementation cost: i.e. we selected (r0, r1, r2, r3) with the smallest sum of
distance from either 0, 8, or 16. As a result, we selected (r0, r1, r2, r3) = (8, 8, 8, 9).

3.4.6 Initial Value

We believe that the security provided by the structure of the AURORA family does not depend on
the value of the initial value, so any value can be used as the initial value. We chose the constants
such as all-0 or all-1, because we don’t need additional area to memorize the specific constants.

All of AURORA-256, AURORA-512, and AURORA-256M use the same all-0 constants. We
don’t identify any security problem, because each module used in AURORA-256, AURORA-
512, and AURORA-256M are different due to different matrices and constants. Similarly, all of
AURORA-224, AURORA-384, and AURORA-224M use the same all-1 constants, but we don’t
identify any security problem.
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Chapter 4

Security of AURORA

4.1 Expected Strength

For AURORA-n, n ∈ {224, 256, 384, 512} and AURORA-nM, n ∈ {224, 256}, each hash function
is expected to satisfy preimage resistance of approximately n bits, second preimage resistance of
approximately n − k bits for any message shorter than 2k bits, and the collision resistance of
approximately n/2 bits. Several attempts to attack the AURORA family by the above attack
scenarios are described in Sec. 4.3.1-4.3.3.

Moreover, all members in AURORA family provide resistance to length-extension attacks (see
Sec. 4.3.4).

Resistance against multicollision attack is achieved in AURORA-224M/256M. See Sec. 4.3.5.
Also, any m-bit hash function specified by taking a fixed subset of the function’s output bits

is expected to meet the above requirements with m replacing n.
If one of AURORA-n and AURORA-nM is used with HMAC to construct a PRF [23], the

PRF resists any distinguishing attack that requires much fewer than 2n/2 queries and significantly
less computation than a preimage attack (see Sec. 4.2.1).

If AURORA-n or AURORA-nM is used in the randomized hashing scheme [39], it provides n
bits of security against the following attack. 1) An attacker gets a randomized hash of M1 and
randomization value r1 that has been randomly chosen without the attacker’s control, 2) Find M2

and r2 that yield the same randomized hash value. Since AURORA hash functions are secure hash
functions, it can be expected that the randomized hashing using AURORA is a secure scheme.

4.2 Security Argument

4.2.1 Security of HMAC using AURORA

HMAC-AURORA-224/256 specified in Sect. 6.2 employs CF and FF as their compression func-
tions and its domain extension is the same as the MD transform. Fig. 4.1 shows the structure of
HMAC-AURORA-224/256. According to the discussion in Sect. 4.2.3, CF and FF are expected
to be pseudorandom functions (PRFs) when keyed via the IV. They are also expected to be PRFs
when keyed via its data input. HMAC using the MD transform was proved to be a PRF when
keyed via the IV assuming that the underlying compression function is a PRF when keyed via the
IV and when keyed via its data input [4]. Therefore HMAC-AURORA-224/256 is expected to be
a good PRF [4].

Fig. 4.2 shows a structure of HMAC-AURORA-384/512 specified in Sect. 6.2. It can be re-
garded that the iterated compression function of HMAC-AURORA-384/512 consists of the fol-
lowing 17 compression functions.
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CFMFF 1
1(X,CV ) = MFF (CF1(X,CV )),

...
CFMFF 1

7(X0||...||X6) = MFF (CF 7(X6,CF 6(X5, ...,CF 1(X0, CV )...))),
CFMF 1(X0||...||X6) = MF (CF 7(X6,CF 6(X5, ...,CF 1(X0, CV )...))),

CFMFF 0
0(X,CV ) = MFF (CF 0(X,CV )),

...
CFMFF 0

7(X0||...||X7, CV ) = MFF (CF 7(X7,CF 6(X6, ...,CF 0(X0, CV )...))),
CFMF 0(X0||...||X7, CV ) = MF (CF 7(X7,CF 6(X6, ...,CF 0(X0, CV )...)))

NMAC using the MD transform was proved to be a PRF when keyed via the IV assuming
that the underlying compression function is a PRF when keyed via the IV. HMAC-AURORA-
384/512 can be a PRF when keyed via the IV if it satisfies that (1) the 17 compression functions
used in the iterated compression function of HMAC-AURORA-384/512 is PRFs when keyed via
the IV, (2) MFF is a PRF when keyed via the IV, and (3) keys K ′IN and K ′OUT are chosen
at random. First, since all 17 compression functions employ MFF or MF as the final function,
they can be regarded as PRFs when keyed via the IV. Second, the MFF can also be a PRF
when keyed via the IV. Finally, if the inputs of two CF 0(·,H0)s, KIN and KOUT are chosen at
random, the outputs K ′IN and K ′OUT will be almost random when H0 is fixed. Thus HMAC-
AURORA-384/512 is expected to be a good PRF when keyed via the IV. Also by the similar
manner, HMAC-AURORA-224M/256M is expected to be a good PRF.

M0

512

256

KIN

CF CFH0

Mm-1

FF

M1

CF

CF

KOUT

FFiterated compression function
256K’OUT

K’IN

Figure 4.1: HMAC-AURORA-224/256.
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Figure 4.2: HMAC-AURORA-384/512.
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4.2.2 Security Proofs of DMMD Transform

In this section, we present the security theorems and their proofs on important security properties
of the Double-Mix Merkle Damg̊ard (DMMD) transform. We show that:

• the DMMD transform is collision resistant, as a hash function, in the random oracle model,
and

• the DMMD transform is preimage resistant if MFF is preimage resistant.

The first result requires some assumption on the adversary, but it still covers a class of known
attacks.

Collision resistance of the DMMD transform. We first restate the transform to fix the
notation. Let f0, f̂0, . . . , fl−1, f̂l−1 : {0, 1}m+n → {0, 1}n, F0 : {0, 1}2n → {0, 1}2n, and F1 :
{0, 1}2n → {0, 1}c be functions. The DMMD transform internally uses f0, f̂0, . . . , fl−1, f̂l−1, F0,
and F1. Two initial values H0, Ĥ0 ∈ {0, 1}n are fixed constants. Without loss of generality, we
assume it takes an (already padded) message M = (M0, . . . ,Mµ−1) ∈ ({0, 1}m)∗ as input. The
block length, µ, may vary across the messages. As we assume that the padding is properly done,
the last block, Mµ−1, contains the length of the original message, and therefore µ ≥ 1. The output
is Hµ+1 ∈ {0, 1}c. It works as in Figure 4.3.

Algorithm DMMDf0,f̂0...,fl−1,f̂l−1,F0,F1(M):
for i← 0 to µ− 1 do

(Hi+1, Ĥi+1)← (fi mod l(Mi,Hi), f̂i mod l(Mi, Ĥi))
if (0 < i < µ− 1) ∧ (i mod l = l − 1) then

(Hi+1, Ĥi+1)← F0(Hi+1, Ĥi+1)
Hµ+1 ← F1(Hµ, Ĥµ)
return Hµ+1

Figure 4.3: Algorithm of DMMDf0,f̂0...,fl−1,f̂l−1,F0,F1(M).

Now we describe our collision finding adversaryA1. A1 has oracle access to f0, f̂0, . . . , fl−1, f̂l−1,
F0, and F1, and outputs M,M ′ ∈ {0, 1}∗ such that M 6= M ′. A1 makes q queries to each of
f0, f̂0, . . . , fl−1, f̂l−1, F0, and F1. We say A1 wins if DMMD(M) = DMMD(M ′). A1 may access
the oracles in an arbitrarily order.

Now A1’s advantage is defined as

Advcoll
DMMD(A1) = Pr(Af0,f̂0,...,fl−1,f̂l−1,F0,F1

1 wins),

where the probability is taken over the choices of f0, f̂0, . . . , fl−1, f̂l−1, F0, F1 and A1’s coin (if
any). A1 is assumed to know DMMD(M) = DMMD(M ′) holds when A1 outputs M and M ′.

Function G. We next define a function G, which corresponds to “one loop” of the DMMD
transform. It internally uses f0, f̂0, . . . , fl−1, f̂l−1 and F0. It takes two initial values H0, Ĥ0 ∈
{0, 1}n, and a message M = (M0, . . . ,Mµ−1) of at most l blocks (i.e., µ ≤ l) as inputs, and
produces the output (Hµ, Ĥµ) ∈ ({0, 1}n)2. It works as in Figure. 4.4.

We next describe our collision finding adversary A2 against G. A2 has access to l + 1 ora-
cles, (f0, f̂0), . . . , (fl−1, f̂l−1), and F0. (fi(·, ·), f̂i(·, ·)) takes (M,H, Ĥ) as input, and the output
is (h, ĥ) = (fi(M,H), f̂i(M, Ĥ)). The 2l + 1 functions, f0, f̂0, . . . , fl−1, f̂l−1, and F0 are ran-
dom oracles. A2 may access the oracles in an arbitrarily order, and outputs ((H, Ĥ),M) and
((H ′, Ĥ ′),M ′) such that ((H, Ĥ),M) 6= ((H ′, Ĥ ′),M ′), where M and M ′ are at most l blocks.
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Algorithm Gf0,f̂0...,fl−1,f̂l−1,F0((H0, Ĥ0),M):
(H0, Ĥ0)← F0(H0, Ĥ0)
for i← 0 to µ− 1 do

(Hi+1, Ĥi+1)← (fi(Mi,Hi), f̂i(Mi, Ĥi))
return (Hµ, Ĥµ)

Figure 4.4: Algorithm of Gf0,f̂0...,fl−1,f̂l−1,F0((H0, Ĥ0),M), where M = (M1, . . . ,Mµ−1) and µ ≤ l.

A2 makes 2q queries to each of (f0, f̂0), . . . , (fl−1, f̂l−1), and q queries to F0. We say A2 wins if
G((H, Ĥ),M) = G((H ′, Ĥ ′),M ′). A2’s advantage is defined as

Advcoll
G (A2) = Pr(A(f0,f̂0),...,(fl−1,f̂l−1),F0

2 wins),

where the probability is taken over the choices of f0, f̂0, . . . , fl−1, f̂l−1, F0 and A2’s coin (if any).
A2 is assumed to know G((H, Ĥ),M) = G((H ′, Ĥ ′),M ′) holds when A2 outputs ((H, Ĥ),M) and
((H ′, Ĥ ′),M ′).

Function F . We next describe the function F . It internally uses f0, f̂0, . . . , fl−1, f̂l−1. It takes
two initial values H0, Ĥ0 ∈ {0, 1}n, a message M = (M0, . . . ,Mµ−1) of at most l blocks (thus
µ ≤ l) as inputs, and produces the output (Hµ, Ĥµ) ∈ ({0, 1}n)2. It works as in Figure. 4.5.

Algorithm Ff0,f̂0...,fl−1,f̂l−1((H0, Ĥ0),M):
for i← 0 to µ− 1 do

(Hi+1, Ĥi+1)← (fi(Mi,Hi), f̂i(Mi, Ĥi))
return (Hµ, Ĥµ)

Figure 4.5: Algorithm of Ff0,f̂0...,fl−1,f̂l−1((H0, Ĥ0),M), where M = (M0, . . . ,Mµ−1), and µ ≤ l.

F is the same as G without initial computation of F0. We note that F is not collision resistant
as a 2n-bit compression function. However, by making a restriction on the chaining values, and
making an assumption on the adversary on the order of oracle access, it is possible to show its
collision resistance.

Let S = {S1, . . . , Ss}, Si ∈ {0, 1}n, be a multi-set of strings. For any integer K ≥ 1, we say
that S is K-coll if there are K indices 1 ≤ i1 < · · · < iK ≤ s such that Si1 = · · · = SiK holds. The
strings (Si1 , . . . , SiK ) is said to be a K collision. We say S is K-COLL if S is K-coll but it is not
(K + j)-coll for all j ≥ 1. If S is not K-COLL, then we say S is K-COLL-free, which means that
S may have a K − 1 collision but does not have K (or more) collision.

Let K ≥ 1 and s ≥ 1 be fixed integers and let H0 = {(H0, Ĥ0), . . . , (Hs−1, Ĥs−1)}, (Hi, Ĥi) ∈
({0, 1}n)2, be a fixed set of strings such that

{
the multi-set HH0 = {H0, . . . ,Hs−1} is K-COLL-free, and
the multi-set HĤ0 = {Ĥ0, . . . , Ĥs−1} is K-COLL-free.

(4.1)

Note we assume that (H0, Ĥ0), the fixed initial value for the DMMD transform, is included in
H0. Now we describe our collision finding adversary A3 against F . A3 has access to l oracles,
(f0, f̂0), . . . , (fl−1, f̂l−1). The 2l functions, f0, f̂0, . . . , fl−1, f̂l−1, are random oracles. A3 may
access the oracles in an arbitrarily order, and outputs ((H, Ĥ),M) and ((H ′, Ĥ ′),M ′) such that
((H, Ĥ),M) 6= ((H ′, Ĥ ′),M ′), where M and M ′ are at most l blocks. A3 makes 2q queries
to each of (f0, f̂0), . . . , (fl−1, f̂l−1). We say A3 wins if F((H, Ĥ),M) = F((H ′, Ĥ ′),M ′), where
(H, Ĥ), (H ′, Ĥ ′) ∈ H0 must hold.
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Now A3’s advantage is defined as

Advcoll
F (A3) = Pr(A(f0,f̂0),...,(fl−1,f̂l−1)

3 wins),

where the probability is taken over the choices of f0, f̂0, . . . , fl−1, f̂l−1 and A3’s coin (if any). A3

is assumed to know F((H, Ĥ),M) = F((H ′, Ĥ ′),M ′) holds when A3 outputs ((H, Ĥ),M) and
((H ′, Ĥ ′),M ′).

We next describe another adversary A4. A4 tries to make a collision between G and F . Now
A4 has access to l + 1 oracles, (f0, f̂0), . . . , (fl−1, f̂l−1), and F0, as A2. A4 may access the oracles
in an arbitrarily order, and outputs ((H, Ĥ),M) and M ′, where M and M ′ are at most l blocks in
lengths. A4 makes 2q queries to each of (f0, f̂0), . . . , (fl−1, f̂l−1), and q queries to F0. We say A4

wins if G((H, Ĥ),M) = F((H0, Ĥ0),M ′), where (H0, Ĥ0) is the fixed initial value of the DMMD
transform.

Now A4’s advantage is defined as

Advcoll
G,F (A4) = Pr(A(f0,f̂0),...,(fl−1,f̂l−1),F0

4 wins),

where the probability is taken over the choices of f0, f̂0, . . . , fl−1, f̂l−1, F0 and A4’s coin (if any).
A4 is assumed to know G((H, Ĥ),M) = F((H0, Ĥ0),M ′) holds when A4 outputs ((H, Ĥ),M) and
M ′.

Now we have the following result.

Theorem 1 (Collision resistance of the DMMD transform) Let A1, A2, A3, and A4 be
adversaries, described as above. Then we have

Advcoll
DMMD(A1) ≤ Advcoll

G (A2) + Advcoll
F (A3) + Advcoll

G,F (A4) +
q2

2c+1
.

Proof. Let A′1 be an adversary, exactly the same as A1, but outputs M and M ′ such that
DMMD′(M) = DMMD′(M ′) and M 6= M ′, where DMMD′ is the same as DMMD but without
the final F1 function. First, we claim that

Advcoll
DMMD(A1) ≤ Advcoll

DMMD′(A
′
1) +

q2

2c+1
, (4.2)

since without finding a collision against DMMD′, A1 is forced to find a collision against F1, i.e.,
a random oracle of c-bit output.

Let cut(·) : ({0, 1}m)∗ → ({0, 1}m)∗ be a function that takes a message M = (M0, . . . ,Mµ−1)
as its input. The output is defined as follows.

• if µ mod l = 0, then return the last l blocks (Mµ−l, . . . ,Mµ−1).

• else return the last µ mod l blocks (Mµ−(µ mod l), . . . ,Mµ−1).

Now there are three cases depending on the length of messages that A′1 outputs. Let M =
(M0, . . . ,Mµ−1),M ′ = (M ′0, . . . ,M

′
µ′−1) be the messages;

• Case 1: (µ mod l 6= 0)∧(µ > l)∧(µ′ mod l 6= 0)∧(µ′ > l), or (µ mod l = 0)∧(µ′ mod l = 0),
or (µ mod l = 0) ∧ (µ′ mod l 6= 0) ∧ (µ′ > l).

• Case 2: (µ mod l 6= 0) ∧ (µ < l) ∧ (µ′ mod l 6= 0) ∧ (µ′ < l).

• Case 3: (µ mod l = 0) ∧ (µ′ mod l 6= 0) ∧ (µ′ < l), or (µ mod l 6= 0) ∧ (µ > l) ∧ (µ′ mod l 6=
0) ∧ (µ′ < l).
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In case 1, A2 can simulate A′1’s oracles and by computing DMMD(M) and DMMD(M ′), A2

obtains the desired (H, Ĥ), (H ′, Ĥ ′), and cut(M) and cut(M ′) correspond to the messages that A2

outputs. Similarly, in case 2, A3 can output ((H0, Ĥ0),M) and ((H0, Ĥ0),M ′), where (H0, Ĥ0) is
the fixed initial value of the DMMD transform. In case 3, A4 can compute (H, Ĥ) by computing
DMMD(M), and cut(M) and M ′ itself are the messages that A4 outputs.

We note that A′1 makes q queries to fi and q queries to f̂i, while A2, A3, and A4 make 2q
queries to (fi, f̂i) oracle. Therefore A2, A3, and A4 can simulate A′1’s oracles. 2

We next show that A2 and A4 are essentially equivalent to A3. We show the following result.

Lemma 1 (Relation between A2, A3, and A4) Let A2, A3, A4 be the adversaries, described
as above. Then we have

Advcoll
G (A2) ≤ Advcoll

F (A3) +
2qK

2n(K−1)
+

q2

22n+1

and

Advcoll
G,F (A4) ≤ Advcoll

F (A3) +
2qK

2n(K−1)
+

q2

22n+1
.

Proof. A2 has a random oracle F0, where the F function is followed. Now since the output of
F0 is a 2n-bit truly random string, we may give all answers to A2, before A2 has oracle access to
(f0, f̂0), . . . , (fl−1, f̂l−1). That is, we let A2 know the response before making queries, and let A2

choose the corresponding input value. Clearly, this does not decrease the success probability of
A2. Now we give q random strings to A2. Let {(H1, Ĥ1), . . . , (Hq, Ĥq)}, (Hi, Ĥi) ∈ ({0, 1}n)2, be
the q random strings. Now since we have





Pr({H1, . . . , Hq} contains K collision) ≤ qK/2n(K−1),

Pr({Ĥ1, . . . , Ĥq} contains K collision) ≤ qK/2n(K−1),

Pr({(H1, Ĥ1), . . . , (Ĥq, Ĥq)} contains 2 collision) ≤ q2/22n+1,

we have

Advcoll
G (A2) ≤ Advcoll

F (A3) +
2qK

2n(K−1)
+

q2

22n+1
.

By the same argument, we have a bound for A4. 2

Therefore, the bound in Theorem 1 can be re-written as

Advcoll
DMMD(A1) ≤ 3Advcoll

F (A3) +
4qK

2n(K−1)
+

q2

22n
+

q2

2c+1
.

To show that the DMMD transform is secure against collision attacks, it is enough to show
that finding a collision among the chaining values for F is a difficult task. To further relax the
assumption, we present another adversary A6.

Adversary A6. We describe our collision finding adversary A6 against F . A6 is exactly the
same as A3, but the output of A6 is ((H, Ĥ),M) and ((H ′, Ĥ ′),M ′) such that ((H, Ĥ),M) 6=
((H ′, Ĥ ′),M ′), where M and M ′ are at most l blocks, and |M | = |M ′|.

Notice that the restriction on the output of A3 is that M and M ′ are at most l blocks in
lengths, i.e., |M | 6= |M ′| is allowed.

We have the following result.

Lemma 2 (Relation between A3 and A6) Let A3 and A6 be the adversaries, described as
above. Then we have

Advcoll
F (A3) ≤ Advcoll

F (A6) +
4l2q2

22n+1
.
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Proof. There are two cases that A3 wins, case |M | = |M ′| and case |M | 6= |M ′|. Consider the
case where A3 wins with M and M ′ such that |M | = µm and |M ′| = µ′m, but µ 6= µ′. Then A3

must have found the collision between the outputs of the (fµ−1, f̂µ−1) oracle and the (fµ′−1, f̂µ′−1)
oracle, i.e., a collision between 2n bit independent random strings. Since there are l intermediate
values, and since A3 makes 2q oracle calls, we have the bound. 2

Next, we further relax the assumption.

Adversary A7. We describe our collision finding adversary A7 against F . A7 is exactly the same
as A6, but it takes µ ≤ l as the input, and the output of A7 is ((H, Ĥ),M) and ((H ′, Ĥ ′),M ′)
such that ((H, Ĥ),M) 6= ((H ′, Ĥ ′),M ′), where M and M ′ are exactly µ blocks. Notice that the
output message of A6 may be adaptively chosen, A7 has to output µ blocks of messages.

We have the following result.

Lemma 3 (Relation between A6 and A7) Let A6 and A7 be the adversaries, described as
above. Then we have

Advcoll
F (A6) ≤ lAdvcoll

F (A7).

A proof is based on the fact that, if A6 succeeds, then A7 with some input µ = 0, . . . , l − 1
should also succeed.

Overall, the bound on A1 is thus

Advcoll
DMMD(A1) ≤ 3lAdvcoll

F (A7) +
12l2q2

22n+1
+

4qK

2n(K−1)
+

q2

22n
+

q2

2c+1
.

To show that the DMMD transform is secure against collision attacks, it is enough to show that
Advcoll

F (A7) is small enough. However, it appears that the proof is not simple. Instead, we
consider another adversary A′7 that works exactly the same as A7, but is restricted in the order
of oracle access. A′7 has to access to oracles (f0, f̂0), . . . , (fl−1, f̂l−1) in this order.

Before showing that A′7 has a small success probability, we present the analysis on the com-
pression function which will be used in the analysis of A′7.

Collision resistance of the compression function. The compression function of the DMMD
transform itself is not collision resistant as a 2n-bit compression function. However, if we make
the assumption on the chaining values that the adversary can use, then it is possible to show its
collision resistance.

LetK ′ ≥ 1 and s ≥ 1 be fixed integers and letH = {(S1, T1), . . . , (Ss, Ts)}, (Si, Ti) ∈ ({0, 1}n)2,
be a multi-set of strings such that

• the multi-set HS = {S1, . . . , Ss} is K ′-COLL-free,

• the multi-set HT = {T1, . . . , Ts} is K ′-COLL-free, and

• H is 2-COLL-free (thus, H is actually a set).

Now we consider the following adversary A8 that has access to an oracle (f0(·, ·), f1(·, ·)) that,
on input (M,U, V ), returns (X,Y ) = (f0(M,U), f1(M,V )). Both f0 and f1 are random oracles.
We consider A8 with the following constraint: For the i-th query (Mi, Ui, Vi) that A8 makes,
(Ui, Vi) has to be chosen from the multi-set H. Let q′ be the number of queries that A8 makes.

Let us define a multi-set Li, 0 ≤ i ≤ q′, as follows. Li is the multi-set of (M,U, V,X, Y ) such
that A8 knows (X,Y ) = (f0(M,U), f1(M,V )) for some (M,U, V ) where (U, V ) ∈ H, after the i-th
query (thus L0 = ∅).

We also define multi-sets Ui and Vi, 0 ≤ i ≤ q′, as follows. Ui is the multi-set of (M,U,X) such
that A8 knows X = f0(M,U) for some (M,U) where U ∈ HS , after the i-th query. Similarly, Vi
is the multi-set of (M,V, Y ) such that A8 knows Y = f1(M,V ) for some (M,V ) where V ∈ HT ,
after the i-th query.

We next define the following associate multi-sets of Li, Ui, and Vi:
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• LM,U,V
i consists of (M,U, V ) such that (M,U, V,X, Y ) ∈ Li for some (X,Y ).

• UM,U
i consists of (M,U) such that (M,U,X) ∈ Ui for some X.

• VM,V
i consists of (M,V ) such that (M,V, Y ) ∈ Vi for some Y .

We also use LX,Yi , LXi , LYi , UXi , and VYi , which are defined in an obvious way.
On making a query, A8 may use the same (Sj , Tj) several times, but we assume it does not make

pointless queries. That is, A8 never makes a query (Mi+1, Ui+1, Vi+1) if (Mi+1, Ui+1) ∈ UM,U
i and

(Mi+1, Vi+1) ∈ VM,V
i .

Let K ≥ 2 be a fixed integer. We say A8 wins if, after making q′ queries,

• LXq′ is K ′K-COLL,

• LYq′ is K ′K-COLL, or

• LX,Yq′ is 2-COLL.

We show that A8 has a low probability in winning the game.

Lemma 4 (Collision resistance of the compression function) Let A8 be the adversary, de-
scribed as above. Assume A8 makes at most q′ queries. Then we have

Pr(Af0,f1
8 wins) ≤ q′2K ′

22n
+

2q′(K ′)2K

2n
+

6q′K ′

2n
+

2q′K

2n(K−1)
.

We present four lemmata to prove Lemma 4.
Let wini, 0 ≤ i ≤ q′, be the event that A8 wins at the i-th query, and wini be its complement

event. Then we have

Pr(Af0,f1
8 wins) ≤

∑

0≤i≤q′−1

Pr(wini+1 | win1 ∧ · · · ∧ wini).

For notational simplicity, let WINi be the event win1 ∧ · · · ∧ wini. We then have

Pr(Af0,f1
8 wins) ≤ Pr(wini+1 |WINi) ≤

∑

0≤i≤q′−1

Pr(LXi+1 is K ′K-COLL |WINi) (4.3)

+
∑

0≤i≤q′−1

Pr(LYi+1 is K ′K-COLL |WINi) (4.4)

+
∑

0≤i≤q′−1

Pr(LX,Yi+1 is 2-COLL |WINi). (4.5)

We first have the following lemma that shows the upper bound on (4.3).

Lemma 5 ∑

0≤i≤q′−1

Pr(LXi+1 is K ′K-COLL |WINi) ≤ q′K

2n(K−1)
.

Proof. From the assumption on H, for the (i + 1)-st query (Mi+1, Ui+1, Vi+1) that A8 makes,
we see that at most K ′ colliding elements are added to LXi . Suppose that A8 makes a query
(Mi+1, Ui+1, Vi+1) such that (Ui+1, Vi+1) = (Sj , Tj), where

• Sj = Sj1 = · · · = SjK′−2
,

• (Mi+1, Sj) = (Mi+1, Sj1) = · · · = (Mi+1, SjK′−2
) 6∈ UM,U

i , and

• (Mi+1, Tj), (Mi+1, Tj1), . . . , (Mi+1, TjK′−2
) ∈ VM,V

i .
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Then, K ′ − 1 < K ′ colliding elements will be added to LXi , but not more. Note that the added
value, Xi+1, is itself a random n-bit string (even under the condition that WINi). Therefore, in
order to produce a K ′K collision, A8 has to produce a K collision among the random strings
returned by the oracle. Since at most q′ random values are returned by the oracle, we have

∑

0≤i≤q′−1

Pr(LXi+1 is K ′K-COLL |WINi) ≤ q′K

2n(K−1)
,

and we have the claimed bound. 2

By exactly the same argument, we have the following lemma for (4.4).

Lemma 6 ∑

0≤i≤q′−1

Pr(LYi+1 is K ′K-COLL |WINi) ≤ q′K

2n(K−1)
.

Before analyzing Pr(LX,Yi+1 is 2-COLL |WINi), we define the events badUi and badVi , 0 ≤ i ≤ q′,
as follows.

• We say badUi occurs if, the i-th query (Mi, Ui, Vi) satisfies (Mi, Ui) 6∈ UM,U
i−1 where (Ui, Vi) =

(S`, T`), and there exists (Mj , Uj , Xj) such that

– (Mj , Uj , Xj) ∈ Ui−1,

– Uj = S`′ ,

– Mi = Mj , S` 6= S`′ , T` = T`′ , and Xi = Xj .

• Similarly, we say badVi occurs if, the i-th query (Mi, Ui, Vi) satisfies (Mi, Vi) 6∈ VM,V
i−1 where

(Ui, Vi) = (S`, T`), and there exists (Mj , Vj , Yj) such that

– (Mj , Vj , Yj) ∈ Vi−1,

– Vj = T`′ ,

– Mi = Mj , S` = S`′ , T` 6= T`′ , and Yi = Yj .

We show that these bad events rarely occur.

Lemma 7

Pr(badUi ) ≤ K ′

2n
and Pr(badVi ) ≤ K ′

2n
.

Proof. We first consider Pr(badUi ). We claim that there are at most K ′ choices for (Mj , Uj , Xj).
To see this, our HT contains only K ′ − 1 collisions, and let (S1, T1), . . . , (SK′−1, TK′−1) be the
elements of H such that T1 = · · · = TK′−1. Now we see that the probability of badUi is maximized
when A8 has already obtained f0(Mi, S1), . . . , f0(Mi, SK′−2), and let Ui = SK′−1. In this case,
A8 has K ′ − 2 < K ′ target values for a collision. Now since the returned value Xi is a random
n-bit string, we have the claimed bound.

By a similar argument, we have Pr(badVi ) ≤ K ′/2n. 2

Note that if badUi (or badVi ) occurs, then A8 has succeeded in making LX,Yi 2-COLL at the
i-th query (if (Mj , Uj , Vj , Xj , Yj) ∈ Li), or can obviously succeed at the (i+1)-st query by making
(Mj , Uj , Vj) (if (Mj , Uj , Vj , Xj , Yj) 6∈ Li). Without loss of generality, we assume that A8 makes
the 2-COLL occur at the (i+ 1)-st query if badUi (or badVi ) occurs and (Mj , Uj , Vj , Xj , Yj) 6∈ Li.

We have the following lemma on Pr(LX,Yi+1 is 2-COLL |WINi).

Lemma 8

Pr(LX,Yi+1 is 2-COLL |WINi) ≤ 2K ′i
22n

+
2(K ′)2K

2n
+

6K ′

2n
.
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Proof. From the assumption on H, for the (i+ 1)-st query (Mi+1, Ui+1, Vi+1) that A8 makes, at
most 2K ′ elements are added to LX,Yi . Suppose that A8 makes a query (Mi+1, Ui+1, Vi+1) such
that (Ui+1, Vi+1) = (Sj , Tj), where

• Sj = Sj1 = · · · = SjK′−2
,

• Tj = T`1 = · · · = T`K′−2
,

• {j1, . . . , jK′−2} ∩ {`1, . . . , `K′−2} = ∅,
• (Mi+1, Sj) = (Mi+1, Sj1) = · · · = (Mi+1, SjK′−2

) 6∈ UM,U
i ,

• (Mi+1, S`1), . . . , (Mi+1, S`K′−2
) ∈ UM,U

i ,

• (Mi+1, Tj1), . . . , (Mi+1, TjK′−2
) ∈ VM,V

i , and

• (Mi+1, Tj) = (Mi+1, T`1) = · · · = (Mi+1, T`K′−2
) 6∈ VM,V

i .

Then, (2K ′ − 3) < 2K ′ elements will be added, but not more. Therefore, the size of LX,Yi is at
most 2K ′i.

We divide the elements that are added to Li into the following three multi-sets, Type1, Type2,
and Type3:

• Type1 consists of (M,U, V,X, Y ) such that X and Y are both randomly chosen at this query.

• Type2 consists of (M,U, V,X, Y ) such that A8 already knows X, and only Y is randomly
chosen at this query. Note that the added elements share the same random Y .

• Type3 consists of (M,U, V,X, Y ) such that A8 already knows Y , and only X is randomly
chosen at this query. The added elements have the same random X.

If the (i+ 1)-st query (Mi+1, Ui+1, Vi+1) satisfies (Mi+1, Ui+1) 6∈ UM,U
i and (Mi+1, Vi+1) 6∈ VM,V

i ,
then the element in Type1 is added, and elements in Type2 and Type3 may also be added to
Li. Similarly, if the (i + 1)-st query satisfies (Mi+1, Ui+1) ∈ UM,U

i and (Mi+1, Vi+1) 6∈ VM,V
i ,

then only elements in Type2 are added to Li, and if the (i + 1)-st query satisfies (Mi+1, Ui+1) 6∈
UM,U
i and (Mi+1, Vi+1) ∈ VM,V

i , then only elements in Type3 are added. A8 does not make
a query (Mi+1, Ui+1, Vi+1) if (Mi+1, Ui+1) ∈ UM,U

i and (Mi+1, Vi+1) ∈ VM,V
i . Therefore, when

(M,U, V,X, Y ) is added to Li, X or Y (or both) are randomly chosen. Also, observe that Type1

has at most one element, and Type2 and Type3 have at most K ′ elements, respectively.
Let TypeX,Yi be a short hand for the multi-set of (X,Y ) such that (M,U, V,X, Y ) ∈ TypeX,Yi

for some (M,U, V ).
Now 2-COLL can occur in the following cases:

Case 1: TypeX,Y1 ∩ LX,Yi 6= ∅. In this case, there are at most 2K ′i elements in LX,Yi for the
collision, and each elements will collide with probability 1/22n. We thus have

Pr(TypeX,Y1 ∩ LX,Yi 6= ∅ |WINi) ≤ 2K ′i
22n

.

Case 2: TypeX,Y2 ∩ LX,Yi 6= ∅, or TypeX,Y3 ∩ LX,Yi 6= ∅.
Consider TypeX,Y2 ∩ LX,Yi 6= ∅. We know that at most K ′ elements are added to Li. Let

(M`1 , U`1 , V`1 , X`1 , Y`1)
...

(M`K′ , U`K′ , V`K′ , X`K′ , Y`K′ )

be corresponding elements, where Y`1 = · · · = Y`K′ is a random n-bit string.
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Now for each (M`j , U`j , V`j , X`j , Y`j ), there are at most K ′K elements in LX,Yi for the colli-
sion, as LXi has most one K ′K collision that share the same X`j with (M`j , U`j , V`j , X`j , Y`j ).
Therefore, at most K ′ elements are added, each added element has at most K ′K elements
in Li for a collision, and each elements collide with probability 1/2n, and we thus have

Pr(TypeX,Y2 ∩ LX,Yi 6= ∅ |WINi) ≤ (K ′)2K

2n
.

Similarly, we have the same bound for TypeX,Y3 ∩ LX,Yi 6= ∅.

Case 3: TypeX,Y1 ∩ TypeX,Y2 6= ∅, or TypeX,Y1 ∩ TypeX,Y3 6= ∅.
Consider TypeX,Y1 ∩ TypeX,Y2 6= ∅. The elements in TypeX,Y1 and TypeX,Y2 share the same
Y . Since X in TypeX,Y1 is randomly chosen, and TypeX,Y2 has at most K ′ elements, we have

Pr(TypeX,Y1 ∩ TypeX,Y2 6= ∅ |WINi) ≤ K ′

2n
.

Similarly, we have the same bound for TypeX,Y1 ∩ TypeX,Y3 6= ∅.

Case 4: TypeX,Y2 ∩TypeX,Y3 6= ∅. We may have 2-COLL only if the randomly chosen Y for Type2

collides with the Y in TypeX,Y3 , or the randomly chosen X for Type3 collides with the X in
TypeX,Y2 . Since Type2 and Type3 have at most K ′ elements,

Pr(TypeX,Y2 ∩ TypeX,Y3 6= ∅ |WINi) ≤ 2K ′

2n
.

Case 5: Two elements in TypeX,Y2 collide, or two elements in TypeX,Y3 collide. Now in order for
two elements in TypeX,Y2 to collide, badUi has to occur. Therefore, from Lemma 7,

Pr(Two elements in TypeX,Y2 collide |WINi) ≤ K ′

2n
.

We have the same bound for TypeX,Y3 .

Overall, we have

Pr(LX,Yi+1 is 2-COLL |WINi) ≤ 2K ′i
22n

+
2(K ′)2K

2n
+

6K ′

2n
,

and this completes the proof. 2

Now we present the proof of Lemma 4.

Proof (of Lemma 4). Lemma 5 gives the bound on (4.3), and Lemma 6 gives the bound on
(4.4). Lemma 8 shows that (4.5) is at most

∑

0≤i≤q′−1

Pr(LX,Yi+1 is 2-COLL |WINi) ≤
∑

0≤i≤q′−1

2K ′i
22n

+
2(K ′)2K

2n
+

6K ′

2n

≤ q′2K ′

22n
+

2q′(K ′)2K

2n
+

6q′K ′

2n
,

and therefore, we have the claimed bound. 2
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Collision resistance of F against A′7. Now we return to A′7. We first recall its definition.
Let K ≥ 1 and s ≥ 1 be fixed integers and let H0 = {(H0, Ĥ0), . . . , (Hs−1, Ĥs−1)}, (Hi, Ĥi) ∈
({0, 1}n)2, be a fixed set of strings such that

• the multi-set HH0 = {H0, . . . , Hs−1} is K-COLL-free, and

• the multi-set HĤ0 = {Ĥ0, . . . , Ĥs−1} is K-COLL-free.

The adversary A′7 takes µ ≤ l as the input. It has access to l oracles, (f0, f̂0), . . . , (fl−1, f̂l−1), in
this order, that is, A′7 first makes queries to (f0, f̂0) and then (f1, f̂1), until (fl−1, f̂l−1) (but the
last l − µ oracles are irrelevant). (fi(·, ·), f̂i(·, ·)) takes (M,H, Ĥ) as the input, and the output
is (h, ĥ) = (fi(M,H), f̂i(M, Ĥ)). The 2l functions, f0, f̂0, . . . , fl−1, f̂l−1, are random oracles. A′7
outputs ((H, Ĥ),M) and ((H ′, Ĥ ′),M ′) such that ((H, Ĥ),M) 6= ((H ′, Ĥ ′),M ′), where M and M ′

are both µ blocks. We say A′7 wins if F((H, Ĥ),M) = F((H ′, Ĥ ′),M ′), where (H, Ĥ), (H ′, Ĥ ′) ∈
H0 must hold.

Now we restate the advantage of A′7, which is defined as

Advcoll
F (A′7) = Pr(A(f0,f̂0),...,(fl−1,f̂l−1)

7 wins),

where the probability is taken over the choices of f0, f̂0, . . . , fl−1, f̂l−1 and A′7’s coin (if any). A′7
is assumed to know F((H, Ĥ),M) = F((H ′, Ĥ ′),M ′) holds when A′7 outputs ((H, Ĥ),M) and
((H ′, Ĥ ′),M ′).

We have the following result.

Theorem 2 (Collision resistance of F) Let A′7 be a collision finding adversary, described as
above, that makes 2q queries to each of (f0, f̂0), . . . , (fl−1, f̂l−1). Then for any integer K ≥ 2,

Advcoll
F (A′7) ≤ 4q2Kl+1

22n
+

4qK2l+2

2n
+

12qKl+1

2n
+
l2K+1qK

2n(K−1)
.

Proof. Let Hi, 1 ≤ i ≤ l, be a multi-set consists of all the strings of (M,H, Ĥ, h, ĥ) such that
A′7 knows (h, ĥ) = (fi−1(M,H), f̂i−1(M, Ĥ)). Hh,ĥi , Hhi , and Hĥi are also defined in the natural
way.

For notational simplicity, let Ei be the event that

(Hhi is Ki+1-COLL) ∨ (Hĥi is Ki+1-COLL) ∨ (Hh,ĥi is 2-COLL),

and Ei be its complement event.
We have

Advcoll
F (A′7) ≤ Pr(E1 | E0) ≤ 4q2K

22n
+

4qK3

2n
+

12qK
2n

+
2K+1qK

2n(K−1)

for µ = 1 from Lemma 4, by letting q′ ← 2q and K ′ ← K. In general, for 1 ≤ i ≤ l, we have

Pr(Ei | E0 ∧ · · · ∧ Ei−1) ≤ 4q2Ki

22n
+

4qK2i+1

2n
+

12qKi

2n
+

2K+1qK

2n(K−1)
.

Therefore, we have

Advcoll
F (A′7) ≤ Pr(El) ≤

∑

1≤i≤l
Pr(Ei | E0 ∧ · · · ∧ Ei−1)

≤
∑

1≤i≤l

4q2Ki

22n
+

4qK2i+1

2n
+

12qKi

2n
+

2K+1qK

2n(K−1)

≤ 4q2Kl+1

22n
+

4qK2l+2

2n
+

12qKl+1

2n
+
l2K+1qK

2n(K−1)
.
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Bound q

K = 3
q2

2495
+

q

2225
+

q

2238
+

q3

2505
2168

K = 4
q2

2492
+

q

2218
+

q

2234
+

q4

2760
2190

K = 5
q2

2489
+

q

2212
+

q

2231
+

q5

21015
2203

K = 6
q2

2486
+

q

2207
+

q

2229
+

q6

21270
2207

Table 4.1: Numerical examples of Theorem 2 for n = 256 and l = 8, and q denotes the minimum
number of q that the bound reaches 1. Since the bound holds for any K, A′7 needs at least 2207

queries.

This completes the proof. 2

We note that although the restriction on A′7, several known attacks on concatenating hash
functions are covered by A′7. If A′7 is close to the best attack, then the above theorem ensures that
A1 cannot succeed in finding a collision against the DMMD transform. See Table 4.1. Although
the bound does not reach the level of collision resistance for a 2n bit hash function, for a reasonable
size of K, say 4 or 5, the bound is much better than the standard birthday bound, and finding a
collision for short concatenating hash functions is recognized as a hard problem, it is unlikely that
the attack will be found on the DMMD transform.

Preimage resistance of the DMMD transform. It is simple to show that the DMMD
transform is preimage resistant if F1 (which corresponds to MFF ) is preimage resistant. We
follow the notation in Figure. 4.3. A preimage finding adversary against DMMD, is an adversary
that is given a hash value h ∈ {0, 1}c, outputs a (padded) message M ∈ ({0, 1}m)∗ such that
DMMD(M) = h. Similarly, a preimage finding adversary against F1 is given a hash value h ∈
{0, 1}c, and outputs (H, Ĥ) ∈ ({0, 1}m)2 such that F1(H, Ĥ) = h.

We have the following result.

Theorem 3 (Preimage resistance of the DMMD transform) If there exists a preimage find-
ing adversary against DMMD, then there exists a preimage finding adversary against F1.

Proof. Suppose that h ∈ {0, 1}c is given to the preimage finding adversary, A, against F1. Now
the preimage finding adversary, B, against DMMD is run with h ∈ {0, 1}c as its input. From the
assumption, B outputs M ∈ ({0, 1}m)∗ such that DMMD(M) = h. Now A computes DMMD(M)
by itself. Let (H, Ĥ) be the input value of F1 that is obtained during the computation, and A
outputs (H, Ĥ). 2

4.2.3 Security Properties of AURORA structure

Guaranteed Active S-boxes in AURORA structure

By the recent evolution of research on attacks on hash functions [55, 56, 57], it becomes very
important to know the immunity against differential type attacks to design a new hash function.
Moreover, in the traditional blockcipher based design strategy of hash functions, the compression
function assumes that the underlying blockcipher behaves like an ideal blockcipher. Thus designers
should design a strong blockcipher which holds enough strength against differential cryptanalysis as
a matter of course. In this section, a permutation used in AURORA called “AURORA structure”
is investigated, and security aspect with regard to differential cryptanalysis is discussed.
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Table 4.2: Guaranteed Numbers of Active S-boxes in AURORA structure.

Round ] of Active S-boxes Round ] of Active S-boxes
1 0 11 36
2 1 12 40
3 5 13 42
4 6 14 46
5 9 15 50
6 15 16 52
7 22 17 56
8 26 18 60
9 30 19 62
10 32 20 66

From the specification of AURORA, it can be seen that both of MSM and CPM employ 8-round
and 17-round AURORA structure, respectively. The AURORA structure is based on an 8-bit S-
box, matrices and a byte diffusion BD design, and all components are byte-oriented. It is natural
for evaluating the immunity against differential cryptanalysis by counting the minimum number
of active S-boxes of AURORA structure using a blockcipher evaluation method [50, 51, 53, 54].

We used a simulation program to count the guaranteed numbers of active S-boxes in the
structure. The counting method treats a byte data as either 0 or 1 in truncated form, and then
tries to find a truncated differential path which holds the minimum number of active S-boxes
for a target round in an exhaustive way [50]. During the search, the DSM conditions are used
to judge whether given truncated paths are valid or not, and behavior of BD is also taken into
consideration.

Table 4.2 shows the obtained guaranteed numbers of active S-boxes for each round of AURORA
structure. From the fact that AURORA employs an S-box whose maximum differential probability
is 2−6, we can conclude that 8-round AURORA structure does not hold characteristics whose
differential probability is higher than 2−156 < 2−128. Similarly, 17-round AURORA structure does
not hold characteristics with probability higher than 2−336 < 2−256. We explain the immunity of
AURORA against differential cryptanalysis by using the above observations.

There are several steps in recently developed differential type attacks for hash functions 1)
finding a local collision and a differential path, 2) finding sufficient conditions applied to a message
MM, and 3) choosing a message M such that all sufficient conditions hold. Since there is no
established way to prevent a hash function from the above attack, we choose one approach to make
the Step 1) be difficult for an attacker by introducing non-linearity in the message scheduling part.
Consider the situation such that an attacker controls messages to find a collision of AURORA.
The attacker will succeed if he finds a collision with less than 128-bit security. But if the attacker
insert a difference into MSM , the probability of the differential that follows a specific characteristic
which is useful for finding collision is very low enough being less than 2−128.

Moreover, we see that a compression function of AURORA-256 uses a 256-bit blockcipher.
The obtained numbers of active S-boxes show in Table 4.2 imply that the blockcipher is secure
enough against distinguishing attacks in differential cryptanalytic scenarios, which we believe is
more important requirement than key recovery attacks on hash functions. As a result, we conclude
that the underlying blockcipher behaves randomly with regard to the differential attack and does
not hold bad properties which are exploited in differential attack scenarios by attackers.

Output Truncation

As stated in Sec. 4.1, any m bits by taking a fixed subset of the AURORA function’s output bits
expected to meet the desirable security requirements. On the other hand, if we see the AURORA
structure carefully, it is noticed that dropping consecutive 32 bits at once from the output of the
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structure sometimes waste the calculation effort of a F-function at the last round. Therefore, we
introduced the truncation function TF to avoid such the lose to maximize the effect of F-functions.

The output truncation function TF is applied for AURORA-256/512/256M with different
IVs to generate the output values for AURORA-224/384/224M, respectively. Due to the in-
ternal connection of AURORA structure, we adopted a design policy of truncation functions
which drop non-successive bytes of output of the compression function to avoid invalidating
the calculation effort of a F-function. Let X(256) be a output of AURORA structure, and set
(X0(64), X1(64), X2(64), X3(64)) ← X. In this case, a truncation function should not drop any of
Xi(64) at once, because output of a F-function at the last round in CPM only affects one of Xi(64),
which means that the F-function is invalidated for the calculation of the output values. There-
fore, the truncation functions in AURORA family is designed to drop byte data at discontinuous
positions.

Impossible Differentials in AURORA Structure

Impossible differential is the differential path that never exists (i.e. its differential probability is
0). The attack using impossible differentials was originally proposed for recovering a blockcipher
key [7].

In the hash function case, there is no secret key to recover, and in most cases the adversary is
allowed to know the message to be hashed. Therefore, it does not seem that impossible differential
attacks work on hash functions. However, existence of impossible differential can allow us to
distinguish a hash function from a random function. Indeed, with such a property, one can show
a non-random behavior of the hash function. For example, Sasaki et al. recovered the secret data
(password) included in the input of the hash function using an impossible differential path in MD4,
which is used in a challenge-response password authentication protocol [48].

We searched for impossible differential paths considering that the matrices satisfy the DSM
conditions (i.e. Conditions I and II described in Sec. 3.4.2). The longest impossible differential
paths that we found in the AURORA structure (with the byte diffusion function BD) have 7
rounds. It can be shown that the byte diffusion plays an important role in avoiding long impossible
differential paths, because there exist trivial 16-round impossible differential paths in the modified-
AURORA structure where byte diffusion function BD is replaced with “usual” word-wise diffusion.

Furthermore, the AURORA structure has stronger resistance against impossible differential
attacks than the generalized Feistel structure: there exist trivial 17-round impossible differential
paths in the 8-branch generalized Feistel structure, and 8-round impossible differential paths in
the 8-branch generalized Feistel structure employing the byte diffusion BD .

Since the chaining value processing module employs the 17-round AURORA structure, and the
message scheduling modules employ the 8-round AURORA structure, it is expected that there is
no impossible differential in the AURORA compression function which can allow us to distinguish
the AURORA hash function from a random function.

4.3 Algorithm Analysis

This section describes a preliminary analysis of AURORA hash functions regarding collision at-
tacks, preimage attacks, second preimage attacks, length-extension attacks, and multicollision
attacks. In this section, “r-round AURORA-256” is used to refer to a variant of AURORA-256
algorithm reduced to r rounds, i.e. the chaining value processing function with r rounds and the
corresponding message scheduling functions. The round function begins from the byte diffusion
function BD and ends by XORing with message words (See Fig. 4.6).

4.3.1 Collision Attack

There are several known approaches for finding collisions of hash functions in the literature. We
consider possible approaches and show their results or how the design of AURORA works to
prevent the attacks. Beside the analyses below, Sec. 4.2.3 describes differential cryptanalysis of
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the AURORA structure, and shows that there is no differential characteristic in MSM and CPM
with high probability.

Approach I : Application of the collision attacks on MDx-SHAx family. A well-known
approach for finding collision of hash functions is to (1) find a local collision by analyzing the
chaining value processing module, (2) stack local collisions together to form a global collision
by analyzing message scheduling module and construct a differential path, and (3) boost success
probability of the attack by message modification techniques. This approach has been successful
in finding collisions on many hash functions including MD4, MD5, SHA-0, SHA-1 [11, 56, 57, 55].

The local collision is defined as a collision for a fixed number of steps of the compression
function under the assumption that the message words from the message scheduling modules can
be chosen independently by the attacker. There exists a 2-round local collision in AURORA,
which is shown in Table 4.3. In the cases of hash functions with simple message schedule such as
MD4 and MD5, this local collision would be useful, because the assumption that message words
are independent almost holds. However, in the case of AURORA, this assumption does not hold
due to the complicated message scheduling modules. Therefore, the existence of a 2-round local
collision does not lead to a certain vulnerability.

In Table 4.3, notice that δi can be zero, and that at most only 8 differences are introduced in
message words. It is possible to construct longer local collisions, but more message word differences
should be involved. It tends to be harder to control.

Table 4.3: A 2-round local collision for AURORA family.

chaining value difference message word difference
round ∆X0 ∆X1 ∆X2 ∆X3 ∆X4 ∆X5 ∆X6 ∆X7 ∆U8i ∆U8i+1 ∆U8i+2 ∆U8i+3 ∆U8i+4 ∆U8i+5 ∆U8i+6 ∆U8i+7

i 0 0 0 0 0 0 0 0 δ1 0 δ2 0 δ3 0 δ4 0
i+ 1 0 δ2 0 δ3 0 δ4 0 δ1 0 δ2 0 δ3 0 δ4 0 δ1
i+ 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note: δ1, δ2, δ3, δ4 are independent zero or non-zero arbitrary 32-bit values. At least one of δi’s
should be non-zero. Here the message schedule is ignored.

The next step is to form a global collision by analyzing the message schedule. In the case of
AURORA, it is difficult to control the message words from the 2nd round due to the heavy message
scheduling functions. Considering the message scheduling functions, we have found collision for
up to 3-round AURORA-224/256 with complexity less than the birthday bound. The differential
characteristic is shown in Table 4.4. The chaining value difference ∆Xi is the difference in the
input chaining value Xi of each round. For other symbols, see Fig. 4.6.

Let α be an 8-bit non-zero value, β be an 8-bit non-zero value where the least significant bit
is zero, and γ = β≫8 1. Then x0, x1, x2, and x3 are defined as follows:

x0: a 32-bit value whose 4th byte is β and the other three bytes are zero. (i.e. 000β)
x1: a 32-bit value whose 4th byte is γ and the other three bytes are zero. (i.e. 000γ)
x2: a 32-bit value whose 3rd byte is α and the other three bytes are zero. (i.e. 00α0)
x3: a 32-bit value whose 2nd byte is α and the other three bytes are zero. (i.e. 0α00)

If we set the message difference ML = (x3, 0, 0, 0, x1, 0, x2, 0) and MR = (0, 0, 0, x1, 0, x2, 0, x3),
the chaining value difference becomes zero at the input of the 2nd round with probability 1. Note
that some of the message words are cyclically shifted by the data rotating function DR before
inputting to the chaining value processing function, e.g., (U8||U11) = (TR,1||TR,3) ≫64 1. To
avoid that the byte difference expands to other bytes by DR, we restrict the value of the non-zero
byte difference in x0 and x1 to β and γ, respectively. Then in the 2nd round, there are differences
in three bytes which are input from message words TL,11, TL,13, and TL,15. In the 3rd round,
the three byte differences get together to leftmost 32-bit word by the byte diffusion function BD .
Therefore, there are three active S-boxes in the left F1. Similarly, there are three active S-boxes
in the left F2 in the message scheduling function MSR. Under the conditions above, there is a
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Table 4.4: A 3-round collision for AURORA-256.

chaining value difference message word difference
round 0 ∆X0 ∆X1 ∆X2 ∆X3 ∆X4 ∆X5 ∆X6 ∆X7 ∆TL,0 ∆TL,1 ∆TL,2 ∆TL,3 ∆TL,4 ∆TL,5 ∆TL,6 ∆TL,7

0 0 0 0 0 0 0 0 x3 0 0 0 x1 0 x2 0
round 1 ∆X0 ∆X1 ∆X2 ∆X3 ∆X4 ∆X5 ∆X6 ∆X7 ∆TR,0 ∆TR,1 ∆TR,2 ∆TR,3 ∆TR,4 ∆TR,5 ∆TR,6 ∆TR,7

x3 0 0 0 x1 0 x2 0 0 0 0 x0 0 x2 0 x3

round 2 ∆X0 ∆X1 ∆X2 ∆X3 ∆X4 ∆X5 ∆X6 ∆X7 ∆TL,8 ∆TL,9 ∆TL,10 ∆TL,11 ∆TL,12 ∆TL,13 ∆TL,14 ∆TL,15

0 0 0 0 0 0 0 0 0 0 0 x1 0 x2 0 x3

round 3 ∆X0 ∆X1 ∆X2 ∆X3 ∆X4 ∆X5 ∆X6 ∆X7 ∆TR,8 ∆TR,9 ∆TR,10 ∆TR,11 ∆TR,12 ∆TR,13 ∆TR,14 ∆TR,15

0 0 0 x1 0 x2 0 x3 y1 y1 0 0 0 0 0 0
round 4 ∆X0 ∆X1 ∆X2 ∆X3 ∆X4 ∆X5 ∆X6 ∆X7 – – – – – – – –

0 0 0 0 0 0 0 0 – – – – – – – –

possibility that the output differences of F1 and F2 cancel. (On the other side, if there are less
than five active S-boxes in F1 and F2 in total, the output differences of F1 and F2 never cancel
due to the DSM condition (See Sec. 3.4.2).) When the cancellation occurs, there is a collision in
the leftmost 32-bit word ∆X0, and there is a collision in ∆X1 at the same time. It is expected
that one can find a cancellation in 32-bit output differences by trying 216 message blocks due
to birthday paradox. Therefore, it is expected that one can find a collision for 3-round (out of
17-round) AURORA with a complexity of 216 3-round AURORA compression function.

This attack works for 3-round AURORA-384/512 and AURORA-224M/256M.

Approach II : Application of the collision attack on Grindahl. Another approach for
finding collisions is a method used in the cryptanalysis of Grindahl [44]. Although it is very hard
to find a low-weight and/or small differential path for Grindahl, Peyrin succeeded in building a
truncated differential path starting from an all-difference pair of states. The points for the attack
to work on Grindahl include

1. an independent message word concatenated every round, and
2. the truncation at the end of each iteration.

The independent message word was used as control bytes and the truncation was used to erase
a truncated difference for no cost. Moreover, in the case of Grindahl, the permutation of each
round was not strong enough.

Regarding 1., in the case of AURORA, which is similar to the MDx family, the message words
which are input every round are not independent, because they are generated by non-linear round
function in a sequential manner. Therefore, it is hard to use message words as control bytes. The
difference between Grindahl model and AURORA model is shown in Fig. 4.7.

Regarding 2., in AURORA, a truncated difference can be erased during three operations: the
MDS matrix operation, the XOR operation with a message word or the XOR operation after the
F-function. Using either of the operations takes high cost (i.e. a truncated difference can be erased
with low probability). Therefore, it does not seem that Peyrin’s attack on Grindahl [44] works on
AURORA.

Remark. The analyses above show that AURORA has a good resistance to existing collision
attacks because of its secure message scheduling. Considering the fact that there have been no
attacks on Whirlpool [3], which was designed based on a similar philosophy to AURORA, this
design strategy using secure message scheduling makes a secure hash function. On the other
hand, the MDx family (including SHA-1 and SHA-2) was designed using fast and simple message
scheduling, so it is expected that a possibly successful attack on the MDx family is unlikely to be
applicable to AURORA.
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Figure 4.6: Compression function of AURORA-256 (reduced to 4-round).

84



permute

X

truncate

permute

M0
concatenate

truncate

permute

truncate

permute

truncate

permute

M1
concatenate

M2
concatenate

M3
concatenate

M4
concatenate

permute

permute

M

permute

permute

permute

X

round

round

round

round

round

Grindahl Model AURORA Model

Figure 4.7: Comparison between Grindahl model and AURORA model.

4.3.2 Preimage Attack

Compared with a lot of work on collision resistance, the preimage resistance (i.e., one-wayness)
has not been analyzed much. However, there is a steep rise in the study on preimage resistance
recently [30, 10, 2, 1].

Approach I : Meet-in-the-middle approach. In most of the recent preimage attacks [30,
10, 2, 1], an attacker first finds a pseudo-preimage, i.e. a preimage on the compression function,
then extends it to a preimage attack on the full hash function1. Therefore, we start by analysis
of the compression function.

Leurent [30] showed the first preimage attack of the full MD4 (also the first preimage attack
on a member of the MD4 family), which extensively used its simple step function and message
expansion. Therefore, it is difficult to apply the techniques used in Leurent’s attack [30] directly
to other hash functions. Aoki and Sasaki used the meet-in-the-middle technique in finding pseudo-
preimages [1] and succeeded in preimage attacks on many hash functions such as MD4/5, HAVAL-
3/4/5, SHA-0/1/2, HAS-160, and RIPEMD [47].

The key idea in the meet-in-the-middle approach in [1] is to divide the attack target into
two chunks of steps so that each chunk includes at least one message word that is independent
from the other chunk. This strategy was successful for poor message schedules where there is
low dependency between message words, but this is not the case for AURORA. For example, it
is possible to divide the compression function into two chunks because the message words from
the right message scheduling function MSR are used in odd rounds only, and the message words
from the left message scheduling function MSL are used in even rounds only. However, since two
chunks are alternated every round, the meet-in-the-middle approach can not applied to AURORA.
Therefore, it is difficult to find a preimage faster than brute-force attack in this approach.

Approach II : Correcting impossible messages. Another approach for finding the preimage
was proposed by De Cannière and Rechberger at CRYPTO2008 [10]. The idea is to start with an
impossible expanded message that would lead to the required hash value, and then to correct this
message until it becomes valid without destroying the preimage property.

This approach has a potential to control a more complex message scheduling, but in the case of
AURORA, it is still difficult to correct message words without destroying the preimage property

1Meet-in-the-middle-approach is also used for converting pseudo-preimages to a preimage, but in this paragraph
we discuss the meet-in-the-middle approach to find pseudo-preimages (i.e. preimages in the compression function).
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due to carefully-designed message scheduling functions.

Approach III : SAT-solver approach. De et al. proposed preimage attacks on reduced vari-
ants of MD4 and MD5 using SAT-solvers [16]. We describe the preliminary analytic results of
preimage attack of AURORA using a SAT-solver. Here, we consider two variants of reduced
version of AURORA for the attack.

The first attempt is trying to recover a preimage of 256-bit output value of a 3-round reduced
version of CF of AURORA-256, called variant A, which does not contain DR without loss of
generality. As a result, the variant A contains 3-round AURORA structure in CP and 1-round
AURORA structure both in MSL and MSR. The preimage attack for the variant A is non-trivial,
and the preimage attack for it can be converted into a SAT problem that contains 384 variables
and 58,112 clauses including 3 to 11 literals (avg. 9.15 literals). Then, we tried to solve the
10 instances of the SAT problem using the MiniSat2 [43]. Each problem is executed on a Xeon
2.80GHz processor with 2GB memory. However, after two weeks of calculation effort by the solver,
no solutions for these problems are obtained.

The second attempt is to find the shrinking version of 3-round reduced version of CF of
AURORA-256, called variant B, which outputs 128-bit hash values in which 1-round of AURORA
structure is halved to 4 data lines. Thus only two different F-functions are included in a round of
the structure. Moreover DR is omitted, and BD only exchanges two bytes of data. In this case,
the SAT-problem contains 192 variables and 29,056 clauses including 3 to 11 literals(avg. 9.15
literals). As a result, we obtained solutions (preimages) of all 10 trials for the variant B. In the
trials, the average calculation time for these problems is about 10 hours.

Even though these preliminary results show the resistance of only the variations of AURORA’s
compression function, but it is sufficient to believe that full CF AURORA-256 which contains 8-
round, 17-round, and 8-round structure in each module have enough immunity against algebraic
attacks using the direct application of SAT-solvers to invert to a preimage within an acceptable
duration of time. Also the other compression functions in the AURORA family and hash functions
constructed by these compression functions are expected to achieve enough strength against this
attack scenario.

4.3.3 Second Preimage Attacks

There are two major directions in second preimage attacks: one is generic long-message second
preimage attacks treating the compression function (or the underlying blockcipher) as a black box,
and the other is second preimage attacks using certain properties inside the compression function.

Compared with collision resistance, second preimage resistance has not been analyzed much,
but we consider possible approaches2 and how the design of AURORA works to prevent the
attacks.

Approach I : Using collision differentials. A straightforward approach for finding second
preimages is to use the differential characteristics used in collision attacks by applying the corre-
sponding message difference to the given message. If the characteristic is followed, then this will
yield a second preimage. This approach was applied to MD4 by Yu et al. [58], but is has some
limitations: one problem is that the success probability of the attack drops by fixing the message.
Another problem is that it only works for a small subset of the message space.

According to the discussion in Sec. 4.2.3 and Sec. 4.3.1, there are no differential characteristics
that hold with high probability in AURORA, it is expected that this approach is not effective for
finding second preimages of AURORA.

Approach II : Using multi-near-collision differentials. Another approach for finding sec-
ond preimages in the literature is to use multi-near-collision differentials. The idea is to compute

2A good summary of possible approaches for finding (second) preimages is written in [10].
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Table 4.5: Second preimage resistance for 2k block messages (k < 64) (bits).

AURORA-224 AURORA-256 AURORA-384 AURORA-512 AURORA-224M AURORA-256M

min{224, 256− k} 256− k 384 512− k 224 256

the hash value for a special message, and try to correct parts of the hash value by applying ap-
propriate differences. This approach was used in the preimage attack on MD4 by Leurent [30],
in the second preimage attacks on SMASH by Lamberger et al. [29], and the (second) preimage
attacks on GOST by Mendel et al. [33].

This approach works if one can find many highly probable differential characteristics for the
same special message. According to the analysis in Sec. 4.2.3, we have not found such differential
characteristics in the compression function of AURORA. Furthermore, we have not found any
properties in the domain extension transform in the AURORA family, which can be useful in
constructing structured messages, e.g. the properties of the SMASH structure used in the second
preimage attacks on SMASH [29].

Furthermore, most of the possible known approaches for preimage attacks can be applicable to
second preimage attacks. Since no approaches discussed in Sec. 4.3.2 are promising, it is difficult
to find second preimage by using those approaches.

Generic long-message second preimage attacks. As Kelsey and Schneier showed in [28],
there exists a generic second preimage attack on an n-bit iterated hash functions with the Merkle-
Damg̊ard construction, regardless of the compression function used. For a message of 2k message
blocks, a second preimage can be found with about k × 2

1
2 +1 + 2n−k+1 work.

Considering this generic long-message second preimage attack, AURORA-256 and AURORA-
512 provide second preimage resistance of about (256−k) bits and (512−k) bits for 2k-block mes-
sages, respectively. AURORA-224 provides second preimage resistance of about min{224, (256 −
k)} bits, since a brute-force attack is faster for k < 32. AURORA-384 provides second preimage
resistance of 384 bits, because the maximum message block size for the AURORA family is 264−1
blocks, i.e. k < 64. AURORA-224M and AURORA-256M have multicollision resistance with the
internal chaining value size of 512 bits, therefore, they provide second preimage resistance of about
224 and 256 bits, respectively.

Second preimage resistance of the AURORA family is summarized in Table 4.5.

4.3.4 Length-Extension Attack

Length-extension attack is the attack for hash functions. Given a hash value h(M), the attacker
obtains h(M ‖M ′) without knowing the original message M . AURORA-256 adopts the strength-
ened Merkle-Damg̊ard (sMD) transform with the finalization function (See Figure 3.1). It is known
that it preserves indifferentiability (PRO) of the underlying compression function [6, Lemma 5.1].
In the abstract model, this property ensures that AURORA-256 looks like an ideal random oracle
H : {0, 1}∗ → {0, 1}256, and thus length-extension attack does not work. The same observation
holds for AURORA-224. The proof for the pseudorandom oracle preservation (PRO-Pr) is based
on the fact that the finalization function is used, and since we follow the same design principle in
the DMMD transform, the attack is unlikely to be applicable to AURORA-384/512/224M/256M.

4.3.5 Multicollision Attack

Multicollision attack [26], introduced by Joux, finds the K collision on the classical iterated hash
function in time O(logK · 2n). We use the classical MD transform in AURORA-224/256, and the
attack can be mounted on them. Although the use of the finalization functions, it does not help
to increase the security against the attack. Finding K collision for AURORA-224/256 is not much
harder than finding ordinary collisions.
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Joux also showed how the multicollision attack can be used to get a collision attack on the con-
catenated hash function. For the DMMD transform, it may be seen as a kind of the concatenated
hash function, while the mixing function is used. Since the mixing function inserted frequently, as
discussed in detail in Sect. 4.2.2, finding even a single collision is hard for the attacker. Therefore,
the attack is unlikely to be applicable to AURORA-224M/256M. However, finding K collision for
AURORA-384/512 is not much harder than finding ordinary collisions.

4.3.6 Slide Attacks

Slide attacks have mostly been used for blockcipher cryptanalysis. As shown in [24], slide attacks
also form a potential threat for a class of hash functions, e.g., sponge-function like structures.
A slide property which can be detected with some significantly high probability can allow up
to distinguish a given hash function from a random oracle. Furthermore, certain constructions
for hash-function-based MACs, e.g., a MAC with prefix key MAC(K,M) = H(K||M), can be
vulnerable to forgery and even to key recovery attacks.

Slide attacks on blockciphers [9] utilize the self-similarity of the cipher, typically caused by
a periodic key schedule. The slide attack on hash functions [24] exploits invertibility and self-
similarity in the sponge-function like structures.

The slide attacks are not applicable to AURORA based on the following considerations: (1)
The compression function of AURORA is not invertible due to the feed-forward in the Davis-
Meyer construction. (2) The structure of AURORA avoids too much self-similarity both in the
level of domain extension transform and in the compression function. In the domain extension
transform level, AURORA-224/256 consists of CF s and FF , which behaves differently from CFs.
In AURORA-384/512, CF s, MF s and MFF behave differently with different constants and differ-
ent I/O. In the compression function level, randomly chosen constants avoid a periodic message
schedule.

4.4 Tunable Security Parameters

There are two tunable security parameters in the AURORA hash function family. The first is an
iteration number of round functions in AURORA structure used in MSM and CPM for all member
AURORA-224/256/384/512/224M/256M . The second is a method to output digests other than
224, 256, 384 and 512 bits.

4.4.1 Number of Rounds

Recommended numbers of round are 8 for MSM and 17 for CPM as described in the specification.
Tuning is done keeping a relationship between these numbers such that c = 2m+1 where m and c
are numbers of rounds for MSM and CPM , respectively. The permissible range for the parameter
m is m ∈ {8, 9, 10, 11, 12, 13, 14, 15, 16}. The greater the parameter is, the security of the hash
function increase by paying cost of the performance. We believe that m > 16 is too much taking
account of the performance dropping.

4.4.2 Variable Hash Size

Current specification of AURORA hash function family only supports hash sizes of 224, 256, 384,
and 512 bits. By setting the initial vectors appropriately, we can also define an alternative hash
function family which supports variable hash sizes for the range of from 1-bit to 512-bit. The hash
functions for 1-bit to 256-bit output are obtained by modifying AURORA-256, and hash functions
for 257-bit to 512-bit output are obtained by modifying AURORA-512. These hash functions are
defined as follows.

• l-bit output hash functions for 1 ≤ l ≤ 256.
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Step. 1 Let H0(256) ← 1l||0256−l.

Step. 2 Execute the AURORA-256 procedure for a message M , then obtain Hm.

Step. 3 Let (X0(64), X1(64), X2(64), X3(64))← Hm.

Step. 4 Let d = bl/4c and m = l mod 4.

Step. 5 Drop the right-most d-bit for all Xi (0 ≤ i ≤ 3)

Step. 6 Additionally, drop the right-most 1-bit for Xi (0 ≤ i ≤ m− 1)

Step. 7 Output X0||X1||X2||X3 as an l-bit hash value.

• l-bit output hash functions for 257 ≤ l ≤ 512.

Step. 1 Let H0(512) ← 1l||0512−l.

Step. 2 Execute the AURORA-512 procedure for a message M , then obtain Hm.

Step. 3 Let (X0(64), X1(64), . . . X7(64))← Hm.

Step. 4 Let d = bl/8c and m = l mod 8.

Step. 5 Drop the right-most d-bit for all Xi (0 ≤ i ≤ 8).

Step. 6 Additionally, drop the right-most 1-bit from remaining Xi (0 ≤ i ≤ m− 1).

Step. 7 Output X0||X1||X2||X3||X4||X5||X6||X7 as an l-bit hash value.
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Chapter 5

Efficient Implementation of
AURORA

This chapter describes our evaluation results of the hash function family AURORA in both software
and hardware implementations.

AURORA can be implemented efficiently in software on various platforms from low-end 8-bit
processors to high-end 64-bit processors. On the NIST 32-bit reference platform, AURORA-
256 achieves 24.3 cycles/byte and AURORA-512 achieves 46.9 cycles/byte; on the NIST 64-bit
reference platform, AURORA-256 achieves 15.4 cycles/byte and AURORA-512 achieves 27.4 cy-
cles/byte. In hardware, AURORA enables a variety of implementations from small-area to high-
throughput implementations. In our evaluations using a 0.13µm CMOS ASIC library, the smallest
area of AURORA-256 is 11.1 Kgates with throughout of 2.2 Gbps, and the highest throughput of
AURORA-256 is 10.4 Gbps with area of 35.0 Kgates; the smallest area of AURORA-512 is 14.6
Kgates with throughout of 1.2 Gbps, and the highest throughput of AURORA-512 is 9.1 Gbps
with area of 56.7 Kgates.

Detailed results of software and hardware implementations are shown in Sec. 5.1 and 5.2,
respectively.

5.1 Software Implementation

This section describes the software performance results of AURORA.

5.1.1 Implementation Types

This subsection describes 5 implementation types suitable for either 32-bit or 64-bit processors: 2
types for 32-bit processors and 3 types for 64-bit processors. We only explain the implementation
methods for F functions because the performance results are strongly affected by these methods.
First, we show the notations used in this section. Next, we present five implementation types
either for 32-bit and 64-bit processors. All of these implementation types are implemented in the
optimized code we provide. Finally, we describe how to select these implementation types in our
optimized codes.

Notations

Let (x0
0, x

0
1, x

0
2, x

0
3) be an input of F-function F0 and (y0

0 , y
0
1 , y

0
2 , y

0
3) be an output of F0. Similarly,

let (x1
0, x

1
1, x

1
2, x

1
3), (x2

0, x
2
1, x

2
2, x

2
3) and (x3

0, x
3
1, x

3
2, x

3
3) be inputs of F1, F2 and F3 , respectively and

let (y1
0 , y

1
1 , y

1
2 , y

1
3), (y2

0 , y
2
1 , y

2
2 , y

2
3) and (y3

0 , y
3
1 , y

3
2 , y

3
3) be outputs of F1, F2 and F3 , respectively.

AURORA has the following four different 32-bit input/output F functions. Those notations
are used to explain how to implement AURORA on 32-bit processors.
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F0 :




y0
0

y0
1

y0
2

y0
3


 =




0x01 0x02 0x02 0x03
0x03 0x01 0x02 0x02
0x02 0x03 0x01 0x02
0x02 0x02 0x03 0x01







S(x0
0)

S(x0
1)

S(x0
2)

S(x0
3)




F1 :




y1
0

y1
1

y1
2

y1
3


 =




0x01 0x06 0x08 0x02
0x02 0x01 0x06 0x08
0x08 0x02 0x01 0x06
0x06 0x08 0x02 0x01







S(x1
0)

S(x1
1)

S(x1
2)

S(x1
3)




F2 :




y2
0

y2
1

y2
2

y2
3


 =




0x03 0x01 0x02 0x02
0x02 0x03 0x01 0x02
0x02 0x02 0x03 0x01
0x01 0x02 0x02 0x03







S(x2
0)

S(x2
1)

S(x2
2)

S(x2
3)




F3 :




y3
0

y3
1

y3
2

y3
3


 =




0x06 0x08 0x02 0x01
0x01 0x06 0x08 0x02
0x02 0x01 0x06 0x08
0x08 0x02 0x01 0x06







S(x3
0)

S(x3
1)

S(x3
2)

S(x3
3)




Also, we can consider that AURORA has the following four different 64-bit input/output F
functions named F ∗ functions which have two 32-bit input/output F-functions as internal functions
(See Fig. 5.1). Let (x0′

0 , ..., x
0′
7 ) be an input of F ∗-function F ∗0 and (y0′

0 , ..., y
0′
7 ) be an output of F ∗0 .

Similarly, let (x1′
0 , ..., x

1′
7 ), (x2′

0 , ..., x
2′
7 ) and (x3′

0 , ..., x
3′
7 ) be inputs of F ∗1 , F2′ and F ∗3 , respectively

and let (y1′
0 , ..., y

1′
7 ), (y2′

0 , ..., y
2′
7 ) and (y3′

0 , ..., y
3′
7 ) be outputs of F ∗1 , F ∗2 and F ∗3 , respectively. Those

notations are used to explain how to implement AURORA on 64-bit processors.

F
F’F F’

(x0, x1, x2, x3)

F*

(x4, x5, x6, x7)

(y0, y1, y2, y3) (y4, y5, y6, y7)

(x0, x1, x2, x3) (x4, x5, x6, x7)

(y0, y1, y2, y3) (y4, y5, y6, y7)

32 32 32 32

32 32

32 3232 32

32 32

Figure 5.1: F ∗-function.

92



F ∗0 :




y0′
0

y0′
1
...
y0′

7


 =

( M0 0
0 M1

)



S(x0′
0 )

S(x0′
1 )

...
S(x0′

7 )




F ∗1 :




y1′
0

y1′
1
...
y1′

7


 =

( M1 0
0 M0

)



S(x1′
0 )

S(x1′
1 )

...
S(x1′

7 )




F ∗2 :




y2′
0

y2′
1
...
y2′

7


 =

( M2 0
0 M3

)



S(x2′
0 )

S(x2′
1 )

...
S(x2′

7 )




F ∗3 :




y3′
0

y3′
1
...
y3′

7


 =

( M3 0
0 M2

)



S(x3′
0 )

S(x3′
1 )

...
S(x3′

7 )




Type-S1

Type-S1 is a straight-forward implementation suitable for 32-bit processors. This implementation
requires the following eight different 8-bit to 32-bit tables T 0

0 , T 0
1 , T 0

2 , T 0
3 , T 1

0 , T 1
1 , T 1

2 and T 1
3 [14].

T 0
0 (x) = ( S(x), {03} × S(x), {02} × S(x), {02} × S(x) )
T 0

1 (x) = ({02} × S(x), S(x), {03} × S(x), {02} × S(x) )
T 0

2 (x) = ({02} × S(x), {02} × S(x), S(x), {03} × S(x) )
T 0

3 (x) = ({03} × S(x), {02} × S(x), {02} × S(x), S(x) )

T 1
0 (x) = ( S(x), {02} × S(x), {08} × S(x), {06} × S(x) )
T 1

1 (x) = ({06} × S(x), S(x), {02} × S(x), {08} × S(x) )
T 1

2 (x) = ({08} × S(x), {06} × S(x), S(x), {02} × S(x) )
T 1

3 (x) = ({02} × S(x), {08} × S(x), {06} × S(x), S(x) )

The following eight tables can be represented by the previous eight tables.

T 2
0 (x) = ({03} × S(x), {02} × S(x), {02} × S(x), S(x) ) = T 0

3 (x)
T 2

1 (x) = ( S(x), {03} × S(x), {02} × S(x), {02} × S(x) ) = T 0
0 (x)

T 2
2 (x) = ({02} × S(x), S(x), {03} × S(x), {02} × S(x) ) = T 0

1 (x)
T 2

3 (x) = ({02} × S(x), {02} × S(x), S(x), {03} × S(x) ) = T 0
2 (x)

T 3
0 (x) = ({06} × S(x), S(x), {02} × S(x), {08} × S(x) ) = T 1

1 (x)
T 3

1 (x) = ({08} × S(x), {06} × S(x), S(x), {02} × S(x) ) = T 1
2 (x)

T 3
2 (x) = ({02} × S(x), {08} × S(x), {06} × S(x), S(x) ) = T 1

3 (x)
T 3

3 (x) = ( S(x), {02} × S(x), {08} × S(x), {06} × S(x) ) = T 1
0 (x)

The tables T 0
0 , T 0

1 , T 0
2 and T 0

3 are used for calculating F0. Similarly, the tables T 1
0 , T 1

1 , T 1
2 and

T 1
3 are for F1, the tables T 2

0 , T 2
1 , T 2

2 and T 2
3 are for F2 , and the tables T 3

0 , T 3
1 , T 3

2 and T 3
3 are for

F3, respectively. Thus the outputs of F functions can be calculated as follows:
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(y0
0 , y

0
1 , y

0
2 , y

0
3) = T 0

0 (x0
0)⊕ T 0

1 (x0
1)⊕ T 0

2 (x0
2)⊕ T 0

3 (x0
3)

(y1
0 , y

1
1 , y

1
2 , y

1
3) = T 1

0 (x1
0)⊕ T 1

1 (x1
1)⊕ T 1

2 (x1
2)⊕ T 1

3 (x1
3)

(y2
0 , y

2
1 , y

2
2 , y

2
3) = T 2

0 (x2
0)⊕ T 2

1 (x2
1)⊕ T 2

2 (x2
2)⊕ T 2

3 (x2
3)

= T 0
3 (x2

0)⊕ T 0
0 (x2

1)⊕ T 0
1 (x2

2)⊕ T 0
2 (x2

3)
(y3

0 , y
3
1 , y

3
2 , y

3
3) = T 3

0 (x3
0)⊕ T 3

1 (x3
1)⊕ T 3

2 (x3
2)⊕ T 3

3 (x3
3)

= T 1
1 (x3

0)⊕ T 1
2 (x3

1)⊕ T 1
3 (x3

2)⊕ T 1
0 (x3

3)

The required operations for this implementation are estimated as follows:

Size of table (KB): 8
Operations of F0, F1, F2 and F3

# of table lookups: 16
# of XORs : 12

Type-S2

Type-S2 uses rotation operations to reduce the table size of Type-S1. This implementation needs
two different 8-bit to 32-bit tables. Due to the rotation operations, the number of operations is
increased. However, the table size can be reduced to 1/4 compared to Type-S1.

The tables T 0
1 , T 0

2 , T 0
3 , T 1

1 , T 1
2 , T 1

3 can be replaced as follows:

T 0
1 (x) = T 0

0 (x)≫ 8
T 0

2 (x) = T 0
0 (x)≫ 16

T 0
3 (x) = T 0

0 (x)≫ 24
T 1

1 (x) = T 1
0 (x)≫ 8

T 1
2 (x) = T 1

0 (x)≫ 16
T 1

3 (x) = T 1
0 (x)≫ 24

This implementation requires the following operations.

Size of table (KB): 2
Operations of F0, F1, F2 and F3

# of table lookups: 16
# of XORs : 12
# of rotations: 12

Type-S3

Type-S3 is a straight-forward implementation suitable for 64-bit processors. This implementation
requires the following sixteen different 8-bit to 64-bit tables.
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T 0′
0 (x) = ( S(x), {03} × S(x), {02} × S(x), {02} × S(x), 0, 0, 0, 0)
T 0′

1 (x) = ({02} × S(x), S(x), {03} × S(x), {02} × S(x), 0, 0, 0, 0)
T 0′

2 (x) = ({02} × S(x), {02} × S(x), S(x), {03} × S(x), 0, 0, 0, 0)
T 0′

3 (x) = ({03} × S(x), {02} × S(x), {02} × S(x), S(x), 0, 0, 0, 0)

T 0′
4 (x) = ( 0, 0, 0, 0, S(x), {02} × S(x), {08} × S(x), {06} × S(x) )
T 0′

5 (x) = ( 0, 0, 0, 0, {06} × S(x), S(x), {02} × S(x), {08} × S(x) )
T 0′

6 (x) = ( 0, 0, 0, 0, {08} × S(x), {06} × S(x), S(x), {02} × S(x) )
T 0′

7 (x) = ( 0, 0, 0, 0, {02} × S(x), {08} × S(x), {06} × S(x), S(x) )

T 1′
0 (x) = ( S(x), {02} × S(x), {08} × S(x), {06} × S(x), 0, 0, 0, 0)
T 1′

1 (x) = ({06} × S(x), S(x), {02} × S(x), {08} × S(x), 0, 0, 0, 0)
T 1′

2 (x) = ({08} × S(x), {06} × S(x), S(x), {02} × S(x), 0, 0, 0, 0)
T 1′

3 (x) = ({02} × S(x), {08} × S(x), {06} × S(x), S(x), 0, 0, 0, 0)

T 1′
4 (x) = ( 0, 0, 0, 0, S(x), {03} × S(x), {02} × S(x), {02} × S(x) )
T 1′

5 (x) = ( 0, 0, 0, 0, {02} × S(x), S(x), {03} × S(x), {02} × S(x) )
T 1′

6 (x) = ( 0, 0, 0, 0, {02} × S(x), {02} × S(x), S(x), {03} × S(x) )
T 1′

7 (x) = ( 0, 0, 0, 0, {03} × S(x), {02} × S(x), {02} × S(x), S(x) )

The outputs of F ∗ functions Y 0′ = (y0′
0 ||y0′

1 ||...||y0′
7 ), Y 1′ = (y1′

0 ||y1′
1 ||...||y1′

7 ), Y 2′ = (y2′
0 ||y2′

1 ||...||y2′
7 )

and Y 3′ = (y3′
0 ||y3′

1 ||...||y3′
7 ) can be calculated as follows:

Y 0′ = T 0′
0 (x0′

0 )⊕ T 0′
1 (x0′

1 )⊕ T 0′
2 (x0′

2 )⊕ T 0′
3 (x0′

3 )⊕ T 0′
4 (x0′

4 )⊕ T 0′
5 (x0′

5 )⊕ T 0′
6 (x0′

6 )⊕ T 0′
7 (x0′

7 )

Y 1′ = T 1′
0 (x1′

0 )⊕ T 1′
1 (x1′

1 )⊕ T 1′
2 (x1′

2 )⊕ T 1′
3 (x1′

3 )⊕ T 1′
4 (x1′

4 )⊕ T 1′
5 (x1′

5 )⊕ T 1′
6 (x1′

6 )⊕ T 1′
7 (x1′

7 )

Y 2′ = T 2′
0 (x2′

0 )⊕ T 2′
1 (x2′

1 )⊕ T 2′
2 (x2′

2 )⊕ T 2′
3 (x2′

3 )⊕ T 2′
4 (x2′

4 )⊕ T 2′
5 (x2′

5 )⊕ T 2′
6 (x2′

6 )⊕ T 2′
7 (x2′

7 )

Y 3′ = T 3′
0 (x3′

0 )⊕ T 3′
1 (x3′

1 )⊕ T 3′
2 (x3′

2 )⊕ T 3′
3 (x3′

3 )⊕ T 3′
4 (x3′

4 )⊕ T 3′
5 (x3′

5 )⊕ T 3′
6 (x3′

6 )⊕ T 3′
7 (x3′

7 )

This implementation requires the following operations.

Size of table (KB): 32
Operations of F ∗0 , F ∗1 , F ∗2 and F ∗3

# of table lookups: 32
# of XORs : 28

Type-S4

Type-S4 uses two rotation operations to reduce the table size of Type-S3. Since T 1′
0 , ..., T

1′
7 can

be implemented by using T 0′
0 , ..., T

0′
7 with two rotations, the table size can be reduced to half

compared to Type-S3.

Y 0′ = T 0′
0 (x0′

0 )⊕ T 0′
1 (x0′

1 )⊕ · · · ⊕ T 0′
7 (x0′

7 )

Y 1′ =
(
T 1′

0 (x1′
0 )⊕ T 1′

1 (x1′
1 )⊕ · · · ⊕ T 1′

7 (x1′
7 )
)
≫ 32

Y 2′ = T 2′
0 (x2′

0 )⊕ T 2′
1 (x2′

1 )⊕ · · · ⊕ T 2′
7 (x2′

7 )

Y 3′ =
(
T 3′

0 (x3′
0 )⊕ T 3′

1 (x3′
1 )⊕ · · · ⊕ T 3′

7 (x3′
7 )
)
≫ 32

This implementation requires the following operations.
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Size of table (KB): 16
Operations of F ∗0 , F ∗1 , F ∗2 and F ∗3

# of table lookups: 32
# of XORs : 28
# of rotations: 2

Type-S5

Type-S5 aims to reduce the table size of Type-S4 by half. It requires the following four different
8-bit to 64-bit tables.

T0(x) = ( S(x), {03} × S(x), {02} × S(x), {02} × S(x),
S(x), {02} × S(x), {08} × S(x), {06} × S(x))

T1(x) = ({02} × S(x), S(x), {03} × S(x), {02} × S(x),
{06} × S(x), S(x), {02} × S(x), {08} × S(x))

T2(x) = ({02} × S(x), {02} × S(x), S(x), {03} × S(x),
{08} × S(x), {06} × S(x), S(x), {02} × S(x))

T3(x) = ({03} × S(x), {02} × S(x), {02} × S(x), S(x),
{02} × S(x), {08} × S(x), {06} × S(x), S(x))

Y 0′ =
((
T0(x0′

0 )⊕ T1(x0′
1 )⊕ T2(x0′

2 )⊕ T3(x0′
3 )
)
&0xffffffff00000000

)⊕
((
T0(x0′

4 )⊕ T1(x0′
5 )⊕ T2(x0′

6 )⊕ T3(x0′
7 )
)
&0x00000000ffffffff

)

Y 1′ =
((
T0(x1′

0 )⊕ T1(x1′
1 )⊕ T2(x1′

2 )⊕ T3(x1′
3 )
)� 32

)⊕
((
T0(x1′

4 )⊕ T1(x1′
5 )⊕ T2(x1′

6 )⊕ T3(x1′
7 )
)� 32

)

Y 2′ =
((
T3(x2′

0 )⊕ T0(x2′
1 )⊕ T1(x2′

2 )⊕ T2(x2′
3 )
)
&0xffffffff00000000

)⊕
((
T1(x2′

4 )⊕ T2(x2′
5 )⊕ T3(x2′

6 )⊕ T0(x2′
7 )
)
&0x00000000ffffffff

)

Y 3′ =
((
T3(x3′

0 )⊕ T0(x3′
1 )⊕ T1(x3′

2 )⊕ T2(x3′
3 )
)� 32

)⊕
((
T1(x3′

4 )⊕ T2(x3′
5 )⊕ T3(x3′

6 )⊕ T0(x3′
7 )
)� 32

)

This implementation requires the following operations.

Size of table (KB): 8
Operations of F ∗0 , F ∗1 , F ∗2 and F ∗3

# of table lookups: 32
# of XORs : 28
# of ANDs : 4
# of shift operations : 4

Selecting Implementation Types in the Optimized Codes

We explain how to choose the implementation types described in the previous section from the
optimized codes. In default, Type-S1 for 32-bit processors and Type-S3 for 64-bit processors are
selected. When ’ USE ROT’ is defined in preprocessor, Type-S2 for 32-bit processors is chosen.
Similarly, when ’ USE SHIFT’ is defined, Type-S4 is selected and when ’ SHARE TABLE’ is
defined, Type-S5 is selected.
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Table 5.1: 32/64-bit Processors.

Platform Processor Clock speed Memory OS Compiler
[GHz] [GB]

A Core 2 Duo 2.4 2.0 Windows Vista Visual Studio 2005
Ultimate (32-bit) Professional Edition

B Core 2 Duo 2.4 2.0 Windows Vista Visual Studio 2005
Ultimate (64-bit) Professional Edition

C Opteron 2.6 16.0 Linux kernel 2.4 gcc 3.2.3 (x64)
D Pentium 4 2.26 1.0 Red Hat Linux 7.3 gcc 2.96

Table 5.2: 8-bit Processors.

Platform Vender Processor Compiler IDE
E ATMEL megaAVR family gcc-4.3.0 AVR Studio 4.1.4

(WinAVR 20080610) build 589
F RENESAS H8/300 family, ch38 HEW 4.03.00.001

3217 Group V.6.02.00.000 (+H8/300 tool chain 6.2.0)

5.1.2 Evaluation Results

This section shows the evaluation results of AURORA-224/256/384/512 on 8/32/64-bit processors.
We omit the results of AURORA-224M/256M. As mentioned in Sec. 2.7 and 2.8, AURORA-
224M/256M is structurally very similar to AURORA-384/512, except for constants and final
mixing function. These differences affect the performance results little. Thus the evaluation
results of AURORA-224M/256M can be deduced from those of AURORA-384/512.

The number of cycles/byte for 1 byte message on each table implicate the minimum number of
clock cycles to generate one message digest. For instance, the number of clock cycles of AURORA-
224 implemented by Type-S1 (unroll) to generate one message digest of 1 byte message is 1848
cycles on the Platform A. Since there is no calculation for setting up the algorithms in the optimized
code (e.g., build internal tables), the results on the tables are precise clock cycles to generate hash
values.

32/64-bit Processors

We present the evaluation results on performance of AURORA-224/256/384/512 on 32/64-bit
processors at the present. The platforms used for the evaluation are shown in Table 5.1. We use
cycle counters included in ’cycle.h’ [13]. This code provides machine dependent cycle counters.

Tables 5.3, 5.4, 5.5 and 5.6 represent the evaluation results of AURORA-224, AURORA-256,
AURORA-384 and AURORA-512, respectively. All implementation types described in Sec. 5.1.1
are evaluated for each AURORA hash function. Also, two types of loop structure ’unroll’ and
’looped’ are evaluated. In the ’unroll’ implementation, the round functions of AURORA are
unrolled. Similarly, in the ’looped’ implementation, the round functions are implemented by loop
function. Besides the results of AURORA hash functions, the evaluation results of SHA-256 and
SHA-512 implemented by Brian Gladman [42] are shown in Tables 5.7 and 5.8 by using the same
evaluation method to compare the performances.

8-bit Processors

We present the evaluation results on performance of AURORA-224/256/384/512 on 8-bit proces-
sors at the present. The platforms used for the evaluation are shown in Table 5.2. Table 5.9 shows
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the evaluation results of the compression function for AURORA-224/256 and AURORA-384/512.
Tables 5.10, 5.11, 5.12 and 5.13 represent the evaluation results of AURORA-224, AURORA-256,
AURORA-384 and AURORA-512, respectively.
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Table 5.3: AURORA-224 on 32/64-bit processors.

Hash Function 1 CF call code size
[cycles/byte] [cycles] [bytes]

message size [bytes] 1 10 100 1,000 10,000 - -
Platform A (Core 2 Duo (32-bit))

Type-S1 (unroll) 1,847.4 188.4 36.6 26.2 25.3 1,598.1 142,926
(looped) 1,860.8 190.2 36.8 26.6 25.6 1,616.9 64,996

Type-S2 (unroll) 1,788.9 183.2 35.7 25.3 24.3 1,534.8 179,662
(looped) 1,929.4 195.8 38.1 27.3 26.3 1,662.1 60,172

Type-S3 (unroll) 3,117.2 317.1 62.4 45.8 44.5 2,821.4 198,002
(looped) 2,586.0 265.6 51.8 37.2 35.8 2,285.9 121,034

Type-S4 (unroll) 2,803.6 283.9 55.4 41.0 39.8 2,535.4 174,070
(looped) 2,625.7 265.4 51.7 37.9 36.8 2,334.0 96,262

Type-S5 (unroll) 2,686.2 272.6 52.9 39.0 37.7 2,396.4 163,270
(looped) 2,477.9 251.3 48.7 35.7 34.6 2,193.2 83,990

Platform B (Core 2 Duo (64-bit))
Type-S1 (unroll) 1,270.9 125.6 23.9 17.3 16.8 1,066.8 149,072

(looped) 1,412.5 140.1 26.7 19.6 19.0 1,204.9 66,326
Type-S2 (unroll) 1,490.4 147.8 28.2 20.9 20.3 1,288.1 189,792

(looped) 1,608.2 159.6 30.4 22.6 22.0 1,397.8 62,126
Type-S3 (unroll) 1,155.4 119.0 22.5 15.9 15.4 980.7 205,626

(looped) 1,308.2 132.7 25.3 18.2 17.6 1,119.1 128,490
Type-S4 (unroll) 1,177.8 119.3 22.6 16.2 15.7 995.1 181,694

(looped) 1,262.2 128.7 24.3 17.7 17.1 1,086.2 103,718
Type-S5 (unroll) 1,342.9 134.9 25.5 18.7 18.2 1,156.4 170,894

(looped) 1,421.3 142.8 27.0 20.0 19.4 1,233.9 91,446
Platform C (Opteron)

Type-S1 (unroll) 2,742.1 276.1 50.2 36.4 35.3 2,246.4 57,305
(looped) 2,912.1 292.1 54.0 39.5 38.3 2,455.0 21,641

Type-S2 (unroll) 2,972.8 299.7 55.3 40.6 39.3 2,521.9 51,241
(looped) 3,091.9 311.5 57.8 42.6 41.3 2,654.4 15,625

Type-S3 (unroll) 2,196.4 221.9 40.0 28.9 27.9 1,773.9 83,609
(looped) 1,590.4 161.1 28.1 19.3 18.5 1,179.0 46,169

Type-S4 (unroll) 2,114.6 213.8 38.7 27.7 26.7 1,702.2 70,073
(looped) 1,611.0 164.8 28.7 19.8 19.0 1,197.1 30,073

Type-S5 (unroll) 2,173.0 220.0 39.7 28.4 27.4 1,748.5 60,537
(looped) 1,709.0 173.3 30.0 20.1 19.2 1,234.9 21,881

Platform D (Pentium 4)
Type-S1 (unroll) 4,299.5 436.3 79.5 53.7 51.4 3,279.8 59,772

(looped) 4,197.9 428.0 78.9 52.0 49.7 2,930.5 22,092
Type-S2 (unroll) 5,069.7 498.5 94.7 67.3 65.2 4,142.2 55,172

(looped) 5,093.4 525.4 100.3 68.8 66.6 3,236.1 16,560
Type-S3 (unroll) 10,748.6 1,082.7 199.8 148.4 143.9 9,155.1 127,828

(looped) 7,504.9 755.5 143.9 106.1 103.0 6,588.6 55,436
Type-S4 (unroll) 10,486.6 1,051.0 194.2 143.6 139.4 8,905.0 103,356

(looped) 7,471.2 762.0 142.0 103.7 100.4 6,438.1 38,536
Type-S5 (unroll) 10,005.3 1,010.8 188.4 139.6 135.3 8,579.3 89,528

(looped) 7,213.3 725.8 136.8 99.1 96.3 6,210.2 29,580
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Table 5.4: AURORA-256 on 32/64-bit processors.

Hash Function 1 CF call code size
[cycles/byte] [cycles] [bytes]

message size [bytes] 1 10 100 1,000 10,000 - -
Platform A (Core 2 Duo (32-bit))

Type-S1 (unroll) 1,836.3 185.7 36.3 26.2 25.4 1,598.1 142,926
(looped) 1,837.4 188.2 36.5 26.5 25.6 1,616.9 64,996

Type-S2 (unroll) 1,770.2 179.9 35.0 25.1 24.3 1,534.8 179,662
(looped) 1,902.6 193.6 37.6 27.2 26.3 1,662.1 60,172

Type-S3 (unroll) 3,069.0 311.5 61.6 45.8 44.3 2,821.4 198,002
(looped) 2,544.0 259.1 50.9 36.9 35.8 2,285.9 121,034

Type-S4 (unroll) 2,787.6 280.9 55.1 41.0 39.8 2,535.4 174,070
(looped) 2,585.4 260.7 51.2 37.9 36.7 2,334.0 96,262

Type-S5 (unroll) 2,649.7 267.4 52.4 38.9 37.7 2,396.4 163,270
(looped) 2,447.1 248.2 48.4 35.7 34.6 2,193.2 83,990

Platform B (Core 2 Duo (64-bit))
Type-S1 (unroll) 1,235.3 123.4 23.6 17.3 16.8 1,066.8 149,072

(looped) 1,374.9 137.5 26.4 19.5 19.0 1,204.9 66,326
Type-S2 (unroll) 1,459.8 145.1 28.0 20.8 20.2 1,288.1 189,792

(looped) 1,576.1 156.3 30.4 22.6 22.0 1,397.8 62,126
Type-S3 (unroll) 1,142.2 115.4 22.3 15.9 15.4 980.7 205,626

(looped) 1,273.7 130.1 25.0 18.1 17.6 1,119.1 128,490
Type-S4 (unroll) 1,154.8 117.2 22.3 16.2 15.7 995.1 181,694

(looped) 1,247.7 126.0 24.1 17.7 17.1 1,086.2 103,718
Type-S5 (unroll) 1,315.3 132.6 25.2 18.7 18.2 1,156.4 170,894

(looped) 1,392.6 140.4 26.8 20.0 19.4 1,233.9 91,446
Platform C (Opteron)

Type-S1 (unroll) 2,575.6 262.1 48.9 36.3 35.2 2,246.4 57,305
(looped) 2,792.2 280.1 52.8 39.3 38.2 2,455.0 21,641

Type-S2 (unroll) 2,848.6 286.9 54.0 40.5 39.3 2,521.9 51,241
(looped) 2,978.0 299.8 56.6 42.4 41.3 2,654.4 15,625

Type-S3 (unroll) 2,074.4 209.9 38.8 28.8 27.9 1,773.9 83,609
(looped) 1,476.0 149.7 27.0 19.2 18.5 1,179.0 46,169

Type-S4 (unroll) 2,005.7 202.5 37.6 27.6 26.7 1,702.2 70,073
(looped) 1,492.9 153.5 27.6 19.7 19.0 1,197.1 30,073

Type-S5 (unroll) 2,065.0 213.5 39.0 28.3 27.4 1,748.5 60,537
(looped) 1,534.7 155.9 28.2 19.9 19.2 1,234.9 21,881

Platform D (Pentium 4)
Type-S1 (unroll) 4,036.5 422.3 77.9 53.5 52.2 3,279.8 59,772

(looped) 3,963.2 403.6 76.6 52.2 49.6 2,930.5 22,092
Type-S2 (unroll) 5,069.7 498.5 94.7 67.3 65.2 4,142.2 55,172

(looped) 5,318.5 515.0 101.0 69.2 66.5 3,236.1 16,560
Type-S3 (unroll) 10,475.5 1,045.4 196.9 148.2 143.8 9,155.1 127,828

(looped) 7,297.2 736.2 142.1 106.0 102.8 6,588.6 55,436
Type-S4 (unroll) 10,055.7 1,016.1 191.1 143.3 139.4 8,905.0 103,356

(looped) 7,256.2 735.6 139.7 103.5 100.4 6,438.1 38,536
Type-S5 (unroll) 9,712.1 984.7 185.5 139.1 134.9 8,579.3 89,528

(looped) 6,992.4 709.0 134.6 98.9 96.3 6,210.2 29,580
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Table 5.5: AURORA-384 on 32/64-bit processors.

Hash Function 1 CF call code size
[cycles/byte] [cycles] [bytes]

message size [bytes] 1 10 100 1,000 10,000 - -
Platform A (Core 2 Duo (32-bit))

Type-S1 (unroll) 5,709.0 574.9 86.1 48.8 47.6 2,666.9 142,926
(looped) 6,160.2 628.3 92.5 52.8 51.4 2,875.5 64,996

Type-S2 (unroll) 5,724.6 574.7 85.0 48.2 46.8 2,612.9 179,662
(looped) 5,743.4 580.9 86.4 49.0 47.7 2,666.1 60,172

Type-S3 (unroll) 21,527.2 2,153.0 320.7 187.3 183.1 10,343.1 198,002
(looped) 8,686.9 875.5 130.6 74.3 72.4 4,043.8 121,034

Type-S4 (unroll) 20,457.5 2,048.5 305.3 178.6 174.7 9,842.3 174,070
(looped) 7,603.6 764.1 113.7 64.9 63.4 3,554.4 96,262

Type-S5 (unroll) 21,207.6 2,118.5 315.0 183.7 179.8 10,131.3 163,270
(looped) 7,270.0 732.0 108.8 62.1 60.6 3,395.7 83,990

Platform B (Core 2 Duo (64-bit))
Type-S1 (unroll) 3,786.4 378.0 55.4 31.7 30.7 1,711.8 149,072

(looped) 4,079.6 407.6 59.7 34.0 33.2 1,853.4 66,326
Type-S2 (unroll) 4,267.8 426.4 62.6 35.7 34.9 1,962.1 189,792

(looped) 4,572.6 456.8 67.2 38.4 37.5 2,099.1 62,126
Type-S3 (unroll) 3,455.2 346.4 50.8 28.2 27.4 1,521.4 205,626

(looped) 4,002.3 403.3 59.1 33.1 32.2 1,774.7 128,490
Type-S4 (unroll) 3,506.9 352.0 51.6 28.9 28.1 1,566.7 181,694

(looped) 3,694.3 371.2 54.6 30.7 29.9 1,670.8 103,718
Type-S5 (unroll) 3,803.9 382.6 55.9 31.8 31.0 1,725.2 170,894

(looped) 4,057.3 404.4 59.3 33.7 32.9 1,837.9 91,446
Platform C (Opteron)

Type-S1 (unroll) 7,943.1 796.6 115.7 65.6 63.9 3,587.9 57,305
(looped) 7,212.3 723.9 104.7 59.2 57.7 3,253.4 21,641

Type-S2 (unroll) 8,864.7 886.1 129.1 74.1 72.3 4,060.8 51,241
(looped) 8,103.2 816.5 118.6 67.3 65.6 3,675.1 15,625

Type-S3 (unroll) 8,427.3 844.4 122.8 70.1 68.4 3,844.2 83,609
(looped) 4,214.4 422.6 59.7 32.6 31.5 1,755.7 46,169

Type-S4 (unroll) 8,938.8 895.7 130.9 75.5 73.9 4,139.6 70,073
(looped) 4,223.2 423.1 60.0 32.9 31.9 1,777.1 30,073

Type-S5 (unroll) 7,850.4 787.3 114.6 65.4 63.8 3,577.0 60,537
(looped) 4,380.0 439.5 62.5 34.4 33.3 1,854.6 21,881

Platform D (Pentium 4)
Type-S1 (unroll) 13,832.6 1,410.5 204.5 106.5 98.3 5,483.4 59,772

(looped) 13,475.2 1,342.5 200.5 111.2 107.9 5,811.4 22,092
Type-S2 (unroll) 16,059.2 1,600.5 233.7 135.6 126.2 7,090.0 55,172

(looped) 17,817.9 1,778.9 263.5 150.9 147.4 6,420.3 16,560
Type-S3 (unroll) 29,331.6 2,949.2 433.6 247.9 241.8 13,570.7 127,828

(looped) 21,529.5 2,144.9 316.4 181.0 176.5 9,930.2 55,436
Type-S4 (unroll) 28,286.8 2,839.3 416.8 237.6 232.0 13,046.8 103,356

(looped) 20,501.7 2,051.2 301.4 171.2 167.1 9,451.8 38,536
Type-S5 (unroll) 26,879.0 2,703.9 395.7 225.2 219.7 12,367.1 89,528

(looped) 20,039.9 2,000.5 295.0 167.4 162.8 9,348.4 29,580

101



Table 5.6: AURORA-512 on 32/64-bit processors.

Hash Function 1 CF call code size
[cycles/byte] [cycles] [bytes]

message size [bytes] 1 10 100 1,000 10,000 - -
Platform A (Core 2 Duo (32-bit))

Type-S1 (unroll) 5,733.8 577.0 86.1 48.9 47.6 2,666.9 142,926
(looped) 6,166.8 619.4 92.4 52.9 51.5 2,875.5 64,996

Type-S2 (unroll) 5,737.9 573.2 85.4 48.1 46.9 2,612.9 179,662
(looped) 5,779.8 582.3 86.4 49.0 47.9 2,666.1 60,172

Type-S3 (unroll) 21,441.6 2,147.6 319.8 186.2 183.3 10,343.1 198,002
(looped) 8,647.4 869.0 129.8 74.2 72.4 4,043.8 121,034

Type-S4 (unroll) 20,521.7 2,056.0 305.6 177.5 174.8 9,842.3 174,070
(looped) 7,587.3 759.8 113.2 64.9 63.3 3,554.4 96,262

Type-S5 (unroll) 20,975.2 2,099.8 312.5 183.7 179.0 10,131.3 163,270
(looped) 7,233.3 728.5 108.5 62.1 60.6 3,395.7 83,990

Platform B (Core 2 Duo (64-bit))
Type-S1 (unroll) 3,743.1 372.1 54.9 31.4 30.7 1,711.8 149,072

(looped) 4,028.9 401.5 59.2 34.0 33.2 1,853.4 66,326
Type-S2 (unroll) 4,210.4 421.0 61.9 35.7 34.9 1,962.1 189,792

(looped) 4,523.4 451.6 66.9 38.5 37.6 2,099.1 62,126
Type-S3 (unroll) 3,377.2 340.3 50.2 28.1 27.4 1,521.4 205,626

(looped) 3,928.2 394.6 58.5 33.0 32.2 1,774.7 128,490
Type-S4 (unroll) 3,440.3 346.1 51.0 28.8 28.1 1,566.7 181,694

(looped) 3,653.1 366.0 54.2 30.7 29.9 1,670.8 103,718
Type-S5 (unroll) 3,751.1 376.4 55.4 31.7 30.9 1,725.2 170,894

(looped) 3,992.3 400.0 58.8 33.6 32.9 1,837.9 91,446
Platform C (Opteron)

Type-S1 (unroll) 7,766.1 776.1 113.5 65.3 63.8 3,587.9 57,305
(looped) 7,023.7 702.6 102.6 59.0 57.7 3,253.4 21,641

Type-S2 (unroll) 8,639.4 865.4 127.1 73.9 72.3 4,060.8 51,241
(looped) 7,861.8 788.1 115.6 67.1 65.6 3,675.1 15,625

Type-S3 (unroll) 8,133.3 813.6 119.7 69.8 68.4 3,844.2 83,609
(looped) 3,967.2 398.1 57.3 32.3 31.5 1,755.7 46,169

Type-S4 (unroll) 8,744.3 875.6 129.0 75.3 74.0 4,139.6 70,073
(looped) 4,032.2 404.1 58.1 32.7 31.9 1,777.1 30,073

Type-S5 (unroll) 7,636.7 764.4 112.4 65.2 63.8 3,577.0 60,537
(looped) 4,161.0 416.8 60.2 34.1 33.3 1,854.6 21,881

Platform D (Pentium 4)
Type-S1 (unroll) 13,666.9 1,370.1 198.9 108.5 98.2 5,483.4 59,772

(looped) 13,098.6 1,321.6 195.9 110.9 107.9 5,811.4 22,092
Type-S2 (unroll) 15,518.0 1,557.4 229.4 129.7 128.8 7,090.0 55,172

(looped) 17,203.8 1,729.2 259.2 150.6 147.2 6,420.3 16,560
Type-S3 (unroll) 29,074.0 2,915.4 430.1 247.3 241.7 13,570.7 127,828

(looped) 20,826.0 2,087.1 310.3 180.0 176.3 9,930.2 55,436
Type-S4 (unroll) 27,901.7 2,800.7 413.4 237.3 231.9 13,046.8 103,356

(looped) 20,095.9 2,030.2 298.1 171.0 166.9 9,451.8 38,536
Type-S5 (unroll) 26,513.4 2,662.9 391.9 224.8 219.6 12,367.1 89,528

(looped) 19,608.8 1,978.8 291.8 166.4 162.5 9,348.4 29,580
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Table 5.7: SHA-256 on 32/64-bit processors.

Hash Function 1 CF call code size
[cycles/byte] [cycles] [bytes]

message size [bytes] 1 10 100 1,000 10,000 - -
Platform A (Core 2 Duo (32-bit))

1,609.3 162.2 31.0 23.1 22.5 1,302.1 43,802
Platform B (Core 2 Duo (64-bit))

1,376.1 138.6 26.9 20.5 20.2 1,198.1 44,452
Platform C (Opteron)

1,686.0 169.4 31.9 24.0 23.3 1,403.0 13,745
Platform D (Pentium 4)

3,084.2 311.4 57.2 42.5 41.2 2,390.3 23,668

Table 5.8: SHA-512 on 32/64-bit processors.

Hash Function CF call code size
[cycles/byte] [cycles] [bytes]

message size [bytes] 1 10 100 1,000 10,000 - -
Platform A (Core 2 Duo (32-bit))

6,191.1 621.2 61.2 43.6 42.5 5,118.4 43,802
Platform B (Core 2 Duo (64-bit))

1,805.1 181.5 19.0 13.6 13.3 1,512.6 44,452
Platform C (Opteron)

2,237.0 224.7 22.7 15.4 14.9 1,779.5 13,745
Platform D (Pentium 4)

15,873.8 1,684.2 176.5 120.7 107.8 13,269.1 23,668
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Table 5.9: Compression functions for AURORA-224/256 and AURORA-384/512 on 8-bit proces-
sors.

CF Platform 1 CF call code size stack
[cycles/byte] [bytes] [bytes]

AURORA-224/256 Platform E 446,675 6,158 204
Platform F 3,410,460 4,596 216

AURORA-384/512 Platform E 676,814 6,158 240
Platform F 5,152,644 4,596 250

Table 5.10: AURORA-224 on 8-bit processors.

Hash Function code size stack
[cycles/byte] [bytes] [bytes]

message size 1 10 100 400 1,000 - -
[bytes]

Platform E 451,055 45,255.0 9,147.8 8,002.6 7,326.3 6,158 442
Platform F 3,428,682 343,170.6 68,803.2 60,169.4 55,024.0 4,596 320

Table 5.11: AURORA-256 on 8-bit processors.

Hash Function code size stack
[cycles/byte] [bytes] [bytes]

message size 1 10 100 400 1,000 - -
[bytes]

Platform E 450,601 45,209.6 9,143.3 8,001.5 7,325.9 6,158 442
Platform F 3,425,578 342,922.6 68,767.1 60,158.0 55,022.9 4,596 300

Table 5.12: AURORA-384 on 8-bit processors.

Hash Function code size stack
[cycles/byte] [bytes] [bytes]

message size 1 10 100 400 1,000 - -
[bytes]

Platform E 1,358,852 136,034.7 20,527.6 13,724.9 12,363.7 6,158 503
Platform F 10,331,178 1,033,537.6 155,252.8 103,566.0 93,225.5 4,596 352

Table 5.13: AURORA-512 on 8-bit processors.

Hash Function code size stack
[cycles/byte] [bytes] [bytes]

message size 1 10 100 400 1,000 - -
[bytes]

Platform E 1,358,098 135,959.3 20,520.1 13,723.0 12,363.0 6,158 486
Platform F 10,324,052 1,032,861.2 155,179.1 103,546.4 93,217.6 4,596 300
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5.2 Hardware Implementation

This section describes the hardware optimization techniques and performance results of AURORA.
Since the implementations of AURORA-224 and AURORA-384 are basically same as AURORA-
256 and AURORA-512, respectively, except the initial value and truncation of final hash value, we
designed and evaluated the implementations of AURORA-256 and AURORA-512 in this section.

5.2.1 Optimization Techniques of F-functions

We introduce optimization techniques of F-functions focusing on an S-box, matrices and a pipeline
architecture in hardware implementation.

S-box

The 8-bit S-box of AURORA consists of three layers: affine transformation f , inversion over
GF((24)2) and affine transformation g. In Fig. 5.2 we show the schematic design of our S-box
implementation. The inversion is performed in GF((24)2) defined by the following polynomials:

{
GF(24) : p(x) = x4 + x+ 1
GF((24)2) : q(x) = x2 + x+ λ (λ = {1001} ∈ GF(24)) .

For an arbitrary element a0β + a1 over GF((24)2) where a0, a1 ∈ GF(24) and β is a root of q(x),
the inversion b0β + b1 = (a0β + a1)−1 (b0, b1 ∈ GF(24)) is computed as follows [46]:

b0 = a0∆−1,

b1 = (a0 + a1)∆−1,

∆ = (a0 + a1)a1 + λa2
0.

These arithmetics except an inversion over GF(24), which is automatically generated by logic
synthesis tool according to 16 entries × 4 bits table, can be implemented using NAND logic gates
and XOR logic gates.

x2 λ
x-1f g

inversion  over  GF((24)2)

4

4

8 88 8

4

4

Figure 5.2: Schematic design of S-box implementation.

In Sec. 5.2.3, we apply not only this type of S-box implementation to all the hardware designs of
AURORA but also table-lookup S-box implementation using 256 entries × 8 bits table to Type-H1
implementation described in Sec. 5.2.2 for higher throughput.

Matrices M0, M1, M2 and M3

The 4×4 matricesM0,M1,M2 andM3 are multiplied to the outputs of S-boxes as a linear (4, 4)
multipermutation over GF(28) which is defined by an irreducible polynomial x8 +x4 +x3 +x2 +1.
An addition of two elements in GF(28), denoted by ⊕, is equivalent to a bitwise XOR operation of
their representations as an 8-bit binary string, which costs 8 XOR logic gates. A multiplication in
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GF(28), denoted by ×, corresponds to a multiplication of polynomials modulo x8 +x4 +x3 +x2 +1.
For an element a in GF(28), {02} × a, {04} × a and {08} × a require 3, 5 and 8 XOR logic gates,
respectively.

The matrix M0 can be decomposed into the following form by using the common term.



01 02 02 03
03 01 02 02
02 03 01 02
02 02 03 01


 =




01 00 00 01
01 01 00 00
00 01 01 00
00 00 01 01







01 00 02 00
00 01 00 02
02 00 01 00
00 02 00 01


+




00 00 00 02
02 00 00 00
00 02 00 00
00 00 02 00




For an input vector (x0, x1, x2, x3) and an output vector (y0, y1, y2, y3), the multiplication byM0

can be computed through the following equations.




a0 = {02} × x0

a1 = {02} × x1

a2 = {02} × x2

a3 = {02} × x3





b0 = a2 ⊕ x0

b1 = a3 ⊕ x1

b2 = a0 ⊕ x2

b3 = a1 ⊕ x3





y0 = a3 ⊕ b0 ⊕ b3
y1 = a0 ⊕ b1 ⊕ b0
y2 = a1 ⊕ b2 ⊕ b1
y3 = a2 ⊕ b3 ⊕ b2

The total number and the maximum delay of XOR gates required for multiplication by M0 are
112 and 4, respectively.

The matrix M1 can be decomposed into the following form by using the common term.



01 06 08 02
02 01 06 08
08 02 01 06
06 08 02 01


 =




01 04 00 00
00 01 04 00
00 00 01 04
04 00 00 01







01 02 00 00
00 01 02 00
00 00 01 02
02 00 00 01


+




00 00 00 02
02 00 00 00
00 02 00 00
00 00 02 00




For an input vector (x0, x1, x2, x3) and an output vector (y0, y1, y2, y3), the multiplication byM1

can be computed through the following equations.




a0 = {02} × x0

a1 = {02} × x1

a2 = {02} × x2

a3 = {02} × x3





b0 = a1 ⊕ x0

b1 = a2 ⊕ x1

b2 = a3 ⊕ x2

b3 = a0 ⊕ x3





c0 = {04} × b0
c1 = {04} × b1
c2 = {04} × b2
c3 = {04} × b3





y0 = a3 ⊕ b0 ⊕ c1
y1 = a0 ⊕ b1 ⊕ c2
y2 = a1 ⊕ b2 ⊕ c3
y3 = a2 ⊕ b3 ⊕ c0

The total number and the maximum delay of XOR gates required for multiplication by M1 are
128 and 4, respectively.

The matricesM2 andM3 are composed of the common row vectors toM0 andM1. Therefore,
the multiplications byM2 andM3 are computed by substituting elements of an output vector of
the multiplication by M0 and M1, respectively.

Dividing F-functions for pipeline architecture

In Fig. 5.3, we show the circuits of F-functions F0 and F1. The characters f , I and g in the figure
represent the circuit of the function f , the inverse function over GF((24)2) and the function g
in the S-box S, respectively. In Sec. 5.2.2, we apply the pipeline architecture to both Type-H3
and Type-H4 implementations of AURORA-256 and AURORA-512 in order to achieve higher
throughput. By dividing the circuit F0 into the two parts α and β and inserting registers between
α and β, we can shorten the critical path of the designs and improve the maximum operating
frequency. Similarly, the circuit F1 is divided into the two parts α and γ.

5.2.2 Data Path Architectures

For both AURORA-256 and AURORA-512, we designed four types of hardware implementations:
Type-H1, Type-H2, Type-H3 and Type-H4 implementation. All the implementations do not
include padding function; we assume that an input message is padded and divided into message
blocks of 512 bits. We give the data path architecture of each implementation, where all registers
represented by a box with shadow are composed of registers without enable signal.
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Figure 5.3: Dividing F-functions for pipeline architecture.

C00 C01 C02 C03 C04 C05 C06 C07

R20 R21 R22 R23 R24 R25 R26 R27

R10 R11

BD

message
input

2:1

CONML CONMR

PROTL

CONC {C01,C03,C05,C07}

2:
1

2:1

R12 R13 R14 R15 R16 R17

R00 R01 R02 R03 R04 R05 R06 R07

32 32 32 32 32 32 32 32

32 32 32 32 32 32 32 32

256

256

128 128

F1

BD
32 32 32 32 32 32 32 32

32 32 32 32 32 32 32 32

32 32 32 32 32 32 32 32

F0 F1 F0

256256

256

256

256

256
128

2:1

256256

256

2:1

128 128

128

256
PROTR

256

256

256

256

256

256

256

128

  Message Scheduling Block    Chaining Value Processing Block  

α

β

α α α

3232 3232

γ β

3232 3232

γ

2:1

32 32 32 32 32 32 32 32

32 32 32 32 32 32 3232

256

256

8

2:1

8

2:1

8

2:1

8

2:1

256

256 {C00,C02,C04,C06}

Figure 5.4: Data path architecture of AURORA-256 Type-H1 implementation.

AURORA-256 Type-H1

AURORA-256 Type-H1 implementation processes a round of the AURORA architecture both
in one of the message scheduling module MSM and in the chaining value processing module
CPM simultaneously in one clock cycle. It requires 8 F-function circuits and takes 18 cycles for
both the compression function CF and the finalization function FF . Fig. 5.4 shows the data path
architecture of AURORA-256 Type-H1 implementation. It is divided into two blocks: the message
scheduling block and the chaining value processing block.

In the message scheduling block, a 512-bit message block is input in two cycles; the left 256-bit
ML is input at the 1st cycle and the right 256-bitMR is input at the 2nd cycle. 256-bit intermediate
values of MSL (MSFL) are stored in eight 32-bit registers {R00, . . . , R07} at the cycle of even order
and stored in eight 32-bit registers {R10, . . . , R17} at the cycle of odd order. On the other hand,
256-bit intermediate values of MSR (MSFR) are stored in {R10, . . . , R17} at the cycle of even
order and stored in {R00, . . . , R07} at the cycle of odd order. The pipeline architecture described
in Sec. 5.2.1 is introduced into the message scheduling block; 32-bit registers are inserted between
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Figure 5.5: Data path architecture of AURORA-256 Type-H2 implementation.

α and β, and between α and γ. The architecture cannot shorten the critical path of the whole
circuit because the longer paths exist in the chaining value processing block, but can reduce the
rate of increase in area of the message scheduling block at high operating frequency. We note that
the outputs of β and γ are byte-rotated to the left and to the right, respectively, when 256-bit
intermediate values of MSR (MSFR) are processed.

In the chaining value processing block, the chaining value stored in eight 32-bit registers
{C00, . . . , C07} is loaded and set into eight 32-bit registers {R20, . . . , R27} through the byte dif-
fusion circuit BD after being XORed with the data fed from the message scheduling block and
constant values CONC . BD can be implemented by simple wiring of byte data without any
transistors. From the 2nd cycle to the 17th cycle, the data stored in {R20, . . . , R27} are input
to the round function, and its output is re-stored into {R20, . . . , R27} through BD after being
XORed with the data fed from the message scheduling block and CONC . The data fed from the
message scheduling block pass through the data rotating function PROTL at the cycle of odd
order and PROTR at the cycle of even order, respectively. At the 18th cycle, the output of the
round function are XORed with the data fed from the message scheduling block and the chaining
value stored in {C00, . . . , C07}, and then re-stored into {C00, . . . , C07}. The 128-bit XOR gates
required for updating {C01, C03, C05, C07} can be merged with those for CONC by appending a
128-bit 2:1 selector.

AURORA-256 Type-H2

AURORA-256 Type-H2 implementation processes a round of the AURORA architecture both
in one of MSM and in CPM simultaneously in two clock cycles, when the left 128-bit data are
processed first. It requires 4 F-function circuits and takes 36 cycles for both CF and FF . Fig. 5.5
shows the data path architecture of AURORA-256 Type-H2 implementation, where the data path
width is 128 bits. A 512-bit message block is input in 128-bit blocks using 4 cycles. PROTLH
and PROTRH in the figure show the functions whose input and output are the left 128-bit of the
input and output of the data rotating function PROTL and PROTR, respectively. The number
of F-functions and XOR gates are reduced to half compared to those in Type-H1 implementation.
The pipeline architecture is introduced into the message scheduling block in order to reduce the
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Figure 5.6: 128-bit Byte Diffusion (BD) circuit.
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Figure 5.7: Data path architecture of AURORA-256 Type-H3 implementation.

rate of increase in area of the message scheduling at high operating frequency.
In a 128-bit data path architecture such as Type-H2 implementation, the byte diffusion function

BD cannot be implemented only by simple wiring of byte data; generally it requires a 256-bit 2:1
selector. In our implementations, we utilize the 128-bit byte diffusion (BD) circuit, as shown in
Fig. 5.6. The 128-bit BD circuit consists of byte wiring, sixteen 8-bit registers and sixteen 8-bit 2:1
selectors, where selectors of 128 bits can be reduced. The 256-bit data, which are input into the
128-bit BD circuit in two clock cycles, are output in the order corresponding to BD by controlling
selectors.

AURORA-256 Type-H3

AURORA-256 Type-H3 implementation processes a round of the AURORA architecture either
in one of MSM or in CPM mutually in every one clock cycle. It requires 4 F-function circuits
and takes 36 cycles for both CF and FF . Fig. 5.7 shows the data path architecture of AURORA-
256 Type-H3 implementation. Unlike AURORA-256 Type-H1 and Type-H2 implementation, the
round function circuit is shared for MSM and CPM . The round function is processed by repeating
the following order:

MSL (MSFL)→ CP (CPF )→ MSR (MSFR)→ CP (CPF )→ · · ·
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Figure 5.8: Data path architecture of AURORA-256 Type-H4 implementation.

We can shorten the critical path of the whole circuit and improve the maximum operating fre-
quency by applying the pipeline architecture into the round function circuit.

The left 256-bit ML of a 512-bit message block is input at the 1st cycle, and then 256-bit inter-
mediate values of MSL (MSFL) are stored in eight 32-bit registers {R00, . . . , R07}, {R10, . . . , R17}
or {R20, . . . , R27} by repeating the following order:

{R00, . . . , R07} → {R10, . . . , R17} → {R20, . . . , R27} → {R20, . . . , R27} → · · ·

The right 256-bit MR of a 512-bit message block is input at the 3rd cycle, and then intermediate
values of MSR (MSFR) are stored in registers by repeating the same order as MSL. On the other
hand, the chaining value stored in eight 32-bit registers {C00, . . . , C07} is loaded at the 2nd cycle,
and then 256-bit intermediate values of CP (CPF ) are stored in {R00, . . . , R07} or {R10, . . . , R17}
by repeating the following order:

{R00, . . . , R07} → {R10, . . . , R17} → · · ·

The input and output of F-functions must be adequately selected because either the kind or
the positioning of F-functions among MSL (MSFL), MSR (MSFR) and CP (CPF ) is different;
for intermediate values of MSR (MSFR), the output of F-functions must be byte-rotated to the
left or right. For intermediate values of CP (CPF ), both of the 1st and 3rd 32-bit line, and the
5th and 7th 32-bit line of the input and output of F-functions must be swapped. Note that the
chaining value to be fed forward is XORed into intermediate values of MSR (MSFR) through
PROTL in advance at the 35th cycle, which can reduce one cycle for updating the chaining value.

AURORA-256 Type-H4

AURORA-256 Type-H4 implementation is hybrid of Type-H2 and Type-H3 implementation; it
processes a round of the AURORA architecture either in one of MSM or in CPM mutually in
every two clock cycles. It requires 2 F-function circuits and takes 72 cycles for both CF and FF .
Fig. 5.8 shows the data path architecture of AURORA-256 Type-H4 implementation, where the
data path width is 128 bits. The round function circuit is shared for MSM and CPM in the same
way as Type-H3 implementation. The processing order of the round function is also the same as

110



AURORA-256 Type-H3 implementation, but it requires two clock cycles for each round function.
The pipeline architecture is introduced into the round function circuit, which can improve the
maximum operating frequency.

The left 256-bit ML of a 512-bit message block is input in 128-bit blocks at the 1st and 2nd
cycle, and then intermediate values of MSL (MSFL) are stored in registers by repeating the
following order:

{R00, . . . , R03} → {R10, . . . , R13} → {R00, . . . , R03} → {R10, . . . , R13} → {R20, . . . , R23} →
128-bit BD circuit→ {R30, . . . , R33} → {R40, . . . , R43} → · · ·

The right 256-bit MR of a 512-bit message block is input in 128-bit blocks at the 5th and 6th cycle,
and then intermediate values of MSR (MSFR) are stored in registers by repeating the same order
as MSL. On the other hand, the chaining value stored in four 32-bit registers {C10, . . . , C13} and
{C00, . . . , C03} is loaded via {C10, . . . , C13} at the 3rd and 4th cycle, and then 256-bit intermediate
values of CP (CPF ) are stored in registers by repeating the following order:

{R20, . . . , R23} → 128-bit BD circuit→ {R30, . . . , R33} → {R40, . . . , R43} → · · ·
Note that the chaining value to be fed forward is XORed into intermediate values of MSR

(MSFR) in advance at the 69th and 70th cycle, which can reduce two cycles for updating the
chaining value.

AURORA-512 Type-H1

AURORA-512 Type-H1 implementation processes a round of the AURORA architecture both in
one of the message scheduling module MSM and in the two chaining value processing modules
CPM simultaneously in one clock cycle. It requires 12 F-function circuits and takes 18 cycles for
the compression functions CF s (0 ≤ s ≤ 7), the mixing functions MF and the mixing function for
finalization MFF . The data path architecture of AURORA-512 Type-H1 implementation can be
constructed by appending another chaining value processing block to that of AURORA-256 Type-
H1 implementation. In addition, two 256-bit paths from the eight 32-bit chaining value registers
in both of the two chaining value processing blocks to the message scheduling block must be
appended to process MF and MFF . The two chaining value processing blocks are basically same
except constant values and the F-functions circuits; one block arranges the F-function circuits of
F1 and F0, and the other arranges those of F3 and F2.

AURORA-512 Type-H2

AURORA-512 Type-H2 implementation processes a round of the AURORA architecture both in
one of MSM and in two CPM simultaneously in two clock cycles. It requires 6 F-function circuits
and takes 36 cycles for CF s, MF and MFF . The data path architecture of AURORA-512 Type-
H2 implementation can be constructed by appending another chaining value processing block to
that of AURORA-256 Type-H2 implementation. In addition, two 128-bit paths from the four
32-bit chaining value registers in both of the two chaining value processing blocks to the message
scheduling block must be appended to process MF and MFF .

AURORA-512 Type-H3

AURORA-512 Type-H3 implementation processes a round of the AURORA architecture either
in one of MSM or in one of CPM mutually in one clock cycle. It requires 4 F-function circuits
and takes 56 cycles for CF s, MF and MFF : 54 cycle for message scheduling and chaining value
processing, and 2 cycles for updating the chaining value. Fig. 5.9 shows the data path architecture
of AURORA-512 Type-H3 implementation. The round function is processed by repeating the
following order:

MSL,i → CPL,i → CPR,i → MSR,i → CPL,i → CPR,i → · · ·
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Figure 5.9: Data path architecture of AURORA-512 Type-H3 implementation.

for 0 ≤ i ≤ 9. The pipeline architecture is introduced into the round function circuit, which can
improve the maximum operating frequency.

For CF s, the left 256-bit ML of a 512-bit message block is input at the 1st cycle. For MF
(MFF ), the chaining value stored in eight 32-bit registers {C10, . . . , C17} is loaded at the 1st cycle
as the input of MSL,8 (MSL,9). Intermediate values of MSL,i are stored in eight 32-bit registers
{R00, . . . , R07}, {R10, . . . , R17}, {R20, . . . , R27} or {R30, . . . , R37} by repeating the following order:

{R00, . . . , R07} → {R00, . . . , R07} → {R00, . . . , R07} → {R10, . . . , R17} → {R20, . . . , R27} →
{R30, . . . , R37} → · · ·

For CF s, the right 256-bit MR of a 512-bit message block is input at the 4th cycle. For MF (MFF ),
the chaining value stored in eight 32-bit registers {C00, . . . , C07} is loaded via {C10, . . . , C17} at
the 4th cycle as the input of MSR,8 (MSR,9). Intermediate values of MSR,i are stored in registers
by repeating the same order as MSL,i.

On the other hand, the chaining value stored in {C10, . . . , C17} is loaded at the 2nd cycle as
the input of CPL,i, and then intermediate values of CPL,i are stored in registers by repeating he
following order:

{R10, . . . , R17} → {R20, . . . , R27} → {R30, . . . , R37} → · · ·

The chaining value stored in {C00, . . . , C07} is loaded via {C10, . . . , C17} at the 3rd cycle as the
input of CPR,i, and then intermediate values of CPR,i are stored in registers by repeating the
same order as CPL,i.

The input and output of F-functions must be adequately selected because the kind or the
positioning of F-functions among MSL,i, MSR,i, CPL,i and CPR,i is different; for intermediate
values of MSR,i and CPR,i, the output of F-functions must be byte-rotated to the left or right.
For intermediate values of CPL,i and CPR,i, both of the 1st and 3rd 32-bit line, and the 5th and
7th 32-bit line of the input and output of F-functions must be swapped.
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Figure 5.10: Data path architecture of AURORA-512 Type-H4 implementation.

AURORA-512 Type-H4

AURORA-512 Type-H4 implementation processes a round of the AURORA architecture in one of
MSM or in one of CPM mutually in two clock cycle. It requires 2 F-function circuits and takes 112
cycles for CF s, MF and MFF : 108 cycle for message scheduling and chaining value processing, and
4 cycles for updating the chaining value. Fig. 5.10 shows the data path architecture of AURORA-
512 Type-H4 implementation, where the data path width is 128 bits. The processing order of the
round function is the same as AURORA-512 Type-H3 implementation, but it requires two clock
cycles for each round function.

For CF s, the left 256-bit ML of a 512-bit message block is input in 128-bit blocks at the 1st
and 2nd cycle. For MF (MFF ), the chaining value stored in four 32-bit registers {C30, . . . , C33}
and {C20, . . . , C23} is loaded via {C30, . . . , C33} at the 1st and 2nd cycle as the input of MSL,8
(MSL,9). Intermediate values of MSL,i are stored in registers by repeating the following order:

{R00, . . . , R03} → {R10, . . . , R13} → {R00, . . . , R03} → {R10, . . . , R13} → {R00, . . . , R03} →
{R10, . . . , R13} → {R20, . . . , R23} → {R30, . . . , R33} → 128-bit BD circuit→ {R40, . . . , R43} →
{R50, . . . , R53} → {R60, . . . , R63} → · · ·

For CF s, the right 256-bit MR of a 512-bit message block is input at the 7th and 8th cycle. For
MF (MFF ), the chaining value stored in four 32-bit registers {C10, . . . , C13} and {C00, . . . , C03}
is loaded via {C30, . . . , C33} at the 7th and 8th cycle as the input of MSL,8 (MSL,9). Intermediate
values of MSR,i are stored in registers by repeating the same order as MSL,i.

On the other hand, the chaining value stored in {C30, . . . , C33} and {C20, . . . , C23} is loaded
via {C30, . . . , C33} at the 3rd and 4th cycle as the input of CPL,i, and then intermediate values
of CPL,i are stored in registers by repeating the following order:

{R20, . . . , R23} → {R30, . . . , R33} → 128-bit BD circuit→ {R40, . . . , R43} → {R50, . . . , R53} →
{R60, . . . , R63} → · · ·

The chaining value stored in {C10, . . . , C13} and {C00, . . . , C03} is loaded via {C30, . . . , C33} at
the 5th and 6th cycle as the input of CPR,i, and then intermediate values of CPR,i are stored in
registers by repeating the same order as CPL,i.

113



5.2.3 Evaluation Results

We show our evaluation results on hardware performance of AURORA-256 and AURORA-512 at
the present. For both AURORA-256 and AURORA-512, Type-H1, Type-H2, Type-H3 and Type-
H4 implementations with S-boxes based on inversion over GF((24)2) are evaluated. In addition,
Type-H1 implementation with table-lookup S-boxes is also evaluated in order to achieve higher
throughput. Control signals for all selectors and constant values are generated in a controller
module which is included in each implementation.

The environment of our hardware design and evaluation is as follows.

Language Verilog-HDL
Design library 0.13 µm CMOS ASIC library
Simulator VCS version 2006.06
Logic synthesis Design Compiler version 2007.03-SP3

One gate is equivalent to a 2-way NAND and speed is evaluated under the worst-case condi-
tions. Table 5.14 represents the evaluation results. For each implementation of AURORA-256
and AURORA-512, two types of circuits are synthesized by specifying either area or speed opti-
mization. In the addition, we investigate the condition to maximize “Efficiency” that indicates
“Throughput” per area, which we call efficiency optimization. For AURORA-256 implementations,
“Throughput” is defined as follows:

Throughput [Mbps] =
Frequency [MHz]× Block Size (512 [bits])

Cycles
.

On the other hand, for AURORA-512 implementations, “Throughput” is defined as follows:

Throughput [Mbps] =
Frequency [MHz]× Block Size (512 [bits])

Cycles
× 8

9
,

because the mixing functions MF are inserted after every 8 compression functions CF 0,CF 1,
· · · ,CF 7.

We also show, for comparison, the best known results of hardware performance of SHA-2
using a 0.13 µm CMOS ASIC library by Satoh et al. [49]. The performance of AURORA cannot
be directly compared with them because different design libraries and different logic synthesis
tools were used. However, AURORA enables a variety of implementations from small-area to
high-throughput implementations; for AURORA-256, the smallest area (11,111 gates) is about
3% smaller with about 2.06 times higher efficiency (196.1 Kbps/gate) than that of SHA-224/256
(11,184 gates, 95.4 Kbps/gate), and the highest throughput (10,352 Mbps) is about 4.37 times
higher than that of SHA-224/256 (2,370 Mbps). For AURORA-512, the smallest area (14,613
gates) is about 37% smaller with about 30% higher efficiency (81.5 Kbps/gate) than that of SHA-
384/512 (23,146 gates, 62.8 Kbps/gate), and the highest throughput (9,132 Mbps) is about 3.14
times higher than that of SHA-224/256 (2,909 Mbps).

The highest efficiency of AURORA-256 (344.3 Kbps/gate) and AURORA-512 (194.9 Kbps/gate)
is about 2.23 times and 1.83 times higher than that of SHA-224/256 (154.6 Kbps/gate) and SHA-
384/512 (106.6 Kbps/gate), respectively, which indicates that AURORA is highly efficient hash
function family in hardware implementation.

114



Table 5.14: Results on Hardware Performance of AURORA-256 and AURORA-512.

Data Path Area Frequency Throughput Efficiency
Architecture Cycles S-box [gates] [MHz] [Mbps] [Kbps/gate]

AURORA-256 Type-H1 18 GF((24)2) 18,883 194.3 5,528 292.7
(0.13µm) 24,645 287.9 8,189 332.3

20,825 252.1 7,171 344.3
Table 27,854 213.2 6,065 217.7

35,016 363.9 10,352 295.6
32,997 345.9 9,838 298.2

Type-H2 36 GF((24)2) 13,446 189.2 2,691 200.1
17,797 293.9 4,180 234.9
15,523 266.2 3,786 243.9

Type-H3 36 GF((24)2) 15,173 260.7 3,707 244.3
23,490 464.3 6,603 281.1
17,064 360.9 5,132 300.8

Type-H4 72 GF((24)2) 11,111 306.4 2,179 196.1
14,255 475.3 3,380 237.1
12,257 423.6 3,012 245.7

SHA-224/256 - 72 - 11,484 154.1 1,096 95.4
(0.13µm) [49] 15,329 333.3 2,370 154.6

AURORA-512 Type-H1 18 GF((24)2) 29,235 195.5 4,943 169.1
(0.13µm) 40,219 285.4 7,217 179.4

31,746 244.7 6,187 194.9
Table 42,691 213.2 5,391 126.3

56,748 361.2 9,132 160.9
48,337 317.1 8,018 165.9

Type-H2 36 GF((24)2) 20,685 185.7 2,347 113.5
28,358 286.3 3,619 127.6
22,731 244.7 3,093 136.1

Type-H3 56 GF((24)2) 19,335 236.4 1,921 99.4
25,915 455.8 3,705 143.0
22,129 406.2 3,302 149.2

Type-H4 112 GF((24)2) 14,613 293.1 1,191 81.5
16,969 504.2 2,049 120.7
16,670 496.7 2,018 121.1

SHA-384/512 - 88 - 23,146 125.0 1,455 62.8
(0.13µm) [49] 27,297 250.0 2,909 106.6

For each implementation, the 1st row and the 2nd row show the results of the synthesized circuits
by area and speed optimization, respectively. The 3rd row also shows the results by efficiency
optimization for each implementation of AURORA-256 and AURORA-512.
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Chapter 6

Application of AURORA

6.1 Digital Signature

The digital signature standard (DSS) is specified in FIPS 186-2 [20]. In this standard, the hash
function SHA-1 specified in FIPS 180-1 (FIPS 180-3) is used in many occasions including the
generation of a message digest, the generation and the verification of parameters [19]. Due to that
the same hash size of SHA-1 is not supported by AURORA hash algorithm family, it is not possible
to replace SHA-1 as a member of AURORA directly. However, if we want to use a 160-bit output
hash function, an appropriate truncation function may be applied to AURORA hash function.

Moreover, there is a draft of the digital signature standard which is available as FIPS 186-3 [21].
In the draft, usages of SHA-2 algorithm family are specified. Thus, our AURORA algorithm can
be used as a replacement of corresponding SHA-2 algorithm which has the same hash size.

6.2 Keyed-Hash Message Authentication Code (HMAC)

In FIPS 198, the keyed hash message authentication code (HMAC) is standardized [23]. From
the definition of HMAC that any hash function can be applicable in principle, any algorithm of
AURORA family can be used as a base hash function for it. The output length L and the block
length B should be selected according to the specification of a considered hash function. Table 6.1
summarizes the actual values of L and B for each AURORA hash algorithm.

6.3 Key Establishment Schemes Using Discrete Logarithm
Cryptography

The pair-wise key establishment schemes using discrete logarithm cryptography is described in
NIST SP800-56A [40]. In this document, minimum bit length of the hash function output is

Table 6.1: The values of L and B.

Algorithm L B
AURORA-224 224 512
AURORA-256 256 512
AURORA-384 384 512
AURORA-512 512 512

AURORA-224M 224 512
AURORA-256M 256 512
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assigned according to the selected parameter set on of FA,FB,FC, EA, EB, EC, ED, and EE.
Among them FB and EB require 224-bit output, FC and EC require 256-bit output. ED and EE
require 384-bit and 512-bit output, respectively. AURORA algorithms can be used when one of
the above domain parameters is selected. To be concrete, AURORA algorithm is used as a hash
function H in the concatenation key derivation function or the ASN.1 key derivation function use
a hash function in the document.

6.4 Random Number Generation Using Deterministic Ran-
dom Bit Generators

NIST SP800-90 specifies the recommendation for random number generation using determinis-
tic random generators (DRBG) [41]. There are three DRBGs that use a secure hash function.
HMAC DRBG uses the aforementioned HMAC scheme, thus AURORA algorithms can be applied
by following the rule of the HMAC. Hash DRBG and Dual EC DRBG employ a derivation func-
tion using a hash function called Hash df which call one of SHA-1 and four SHA-2 algorithms.
Accordingly, one of AURORA algorithms can be used as a replacement for one of SHA-2 algo-
rithm called in Hash df. It may be helpful to note that the seed length for Hash DRBG is 440-bit
when using AURORA-384 and AURORA-512 , on the other hand the seed length is 888-bit when
using SHA-384 and SHA-512. This is due to the block length for these AURORA algorithms are
512-bit not 1024-bit. However this is consistent with the specification because it is required that
minimum entropy for seed and reseed are 192-bit and 256-bit for AURORA-384 and AURORA-
512, respectively. The specified seed length 440-bit apparently exceeds these minimum required
entropy.
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Chapter 7

Advantages and Limitations

The hash function family AURORA has the following advantages and limitations. The following
advantages are the realization of the design goal of AURORA family. We believe that the fact
that all advantages are achieved in one hash function family draw a line between AURORA and
other hash functions.

• High and Well-balanced Performance on Variety of Platforms
To meet the requirements of SHA-3 announced by NIST [38], we defined one of our design
goal of a new hash function family that the new hash functions must achieve good perfor-
mance on a variety of platforms including software for desktop PCs, servers, micro processors
and hardware implementations for ASIC and FPGAs. This design goal was also demanded
in the AES competition, and finally selected algorithm Rijndael actually satisfied the design
goal [14]. The consequences of the design goal can be found in the selected components such
as S-box, matrices, byte oriented architecture, reuse of common structure. As a result, we
confirmed that AURORA’s performance on a variety of platforms is competitive with other
known hash functions. On the other hand there is limitation due to such the design goal of
AURORA. It is possible to design a hash function which is very fast when it is implemented
only on a specific platform by scarifying the well-balanced performance on multi platform
implementations. But as explained above, we did not aim for the excellent performance only
on specific platform.

• Sufficient Security Arguments
Moreover, as for the security evaluation, we tried to adopt well-studied components to con-
struct AURORA, otherwise newly developed components are employed if reasonable secu-
rity arguments are provided for the components. For the AURORA structure, the strength
against differential cryptanalysis and impossible differential cryptanalysis can be evaluated
in a relatively reasonable way. For the new domain extension Double Mix Merkle-Damgaad
(DMMD) transform for the longer output, the expected security proof has been provided.

• Multicollision Resistance with Low Additional Cost
Furthermore, we adopted the DMMD transform to offer multicollision resistance by com-
bining parallel compression functions and mixing functions together. As a result, we can
provide AURORA-256M, which is an almost identical hash function with AURORA-512,
and additional implementation cost from AURORA-256 is limited. This fact emphases that
the AURORA hash function family has good consistency among hash functions in the family.
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