
Compact Hardware Implementation of the Hash
Function AURORA-256

Toru Akishita1, Tadaoki Yamamoto2, and Hiroyuki Abe2

1 Sony Corporation
2 Sony LSI Design Inc.

{Toru.Akishita,Tadaoki.Yamamoto,HiroyukiE.Abe}@jp.sony.com

Abstract. This report notes compact hardware implementation of the
hash function AURORA-256.

1 Introduction

AURORA is a hash function family which is a first round candidate of SHA-3
competition [1]. AURORA consists of six hash algorithms including AURORA-
224 and AURORA-256 whose hash size are 224 bits and 256 bits, respectively.
AURORA-224/256 are constructed from the secure and efficient compression
function using a security-enhanced Merkle-Damg̊ard transform, i.e., the strength-
ened Merkle-Damg̊ard transform with the finalization function. The compression
function is designed based on the well-established design techniques for blockci-
phers, and uses the Davies-Meyer construction.

AURORA-224/256 achieves high efficiency both in software implementa-
tions and in hardware implementations. Especially, in hardware implementa-
tions, AURORA-256 enables a variety of implementations, from high-speed to
area-restricted implementations. Using a 0.13µm CMOS ASIC library, AURORA-
256 achieves the highest throughout of 10.4 Gbps. In an area-optimized imple-
mentation, AURORA-256 can be implemented with only 11.1 Kgates, which is
achieved using AURORA-256 Type-H4 implementation with area optimization.
In the implementation, two F-function circuits are used and the data path width
is 128 bits.

In this report, we aim more compact implementation of AURORA-256. By
using only one F-function circuit and 64-bit data path width, we can reduce
gate size to about 8.9 Kgates, which is the smallest area among so-called ”fully
autonomous implementations” in SHA-3 hardware implementations on the SHA-
3 zoo website [2].

2 AURORA-256 Type-H5 implementation

In [1], four types of hardware implementations were considered. Among them,
AURORA-256 Type-H4 architecture achieved the smallest area. It processes a
round of the AURORA architecture in one of the message scheduling module



C10 C11

C00 C01

CONC

4:1

32 32

128

32

32

32

32

3:1

32

32

1 1

3:1
64

32

64

3:1

64

64

64

64

64

64

2:1

64

32 32

64

32 32

32 32

64

32 32

R31

R10 R11

R30

R21

R00 R01

R20

32 32

64

32 32

64

2:1

64

R40 R41

32 32

64

2:1

32 32

64-bit
BD circuit

64

message
input

64

α

β

8

3:1

8

R60 R61

32 32
64

64 64

32 32

64 64

32 32

R51R50

32 32

64

γ

R70 R71

R80 R81

32 32

64

C20 C21

2:1

32 32

64

32 32

64

64

64

6464

C30 C31

64

2:1

32 32

64

32 32

DR circuit

64

Fig. 1. Data path architecture of AURORA-256 Type-H5 implementation

MSM or in the chaining value processing module CPM mutually in every two
clock cycles. It requires two F-function circuits and takes 72 cycles for both the
compression function CF and the finalization function FF .

In order to achieve smaller area, we design another type of implementation,
AURORA-256 Type-H5 implementation. AURORA-256 Type-H5 implementa-
tion processes a round of the AURORA architecture in one of MSM or in CPM
mutually in every four clock cycles. It requires only one F-function circuit and
takes 144 cycles for both CF and FF . Fig. 1 shows the data path architecture of
AURORA-256 Type-H5 implementation, where the data path width is 64 bits.
In the figure, all registers represented by a box with shadow are composed of
registers without enable signal.

In the design, the circuits required for multiplication by the matrix M0

and M1 are merged. For an input vector (x0, x1, x2, x3) and an output vector
(y0, y1, y2, y3), the multiplication byMi (i = 0, 1) can be computed through the
following equations.





a0 = {02} × x0

a1 = {02} × x1

a2 = {02} × x2

a3 = {02} × x3





b0 = a1 ⊕ x0

b1 = a2 ⊕ x1

b2 = a3 ⊕ x2

b3 = a0 ⊕ x3





c0 = b0 ⊕ a3

c1 = b1 ⊕ a0

c2 = b2 ⊕ a1

c3 = b3 ⊕ a2





d0 = a3 ⊕ x0

d1 = a0 ⊕ x1

d2 = a1 ⊕ x2

d3 = a2 ⊕ x3



32

8

R
30
0

8

8

8

8

8

R
20
0

8

8

8

8

8

888

32

8

R
30
1

8

8

8

8

8

R
20
1

8

8

8

8

8

8

R
10
1

8

8

8

8

8

8

R
00
1

8

8

8

8

8

8 8

8 8 8 8

32

8 8 8 8

32

R
31
1R

21
1

R
32
1R

22
1

R
11
1R

01
1

R
12
1R

02
1

R
31
0

R
32
0R

22
0

R
21
0

R
10
0

8

R
11
0

R
12
0

R
13
0

8 8

R
00
0

R
01
0

R
02
0

Fig. 2. 64-bit Byte Diffusion (BD) circuit





e0 = {04} × b0
e1 = {04} × b1
e2 = {04} × b2
e3 = {04} × b3





f0 = (i == 1)? e1 : d3

f1 = (i == 1)? e2 : d0

f2 = (i == 1)? e3 : d1

f3 = (i == 1)? e0 : d2





y0 = c0 ⊕ f0

y1 = c1 ⊕ f1

y2 = c2 ⊕ f2

y3 = c3 ⊕ f3

⊕ denotes an addition of two elements in GF(28), which costs 8 XOR logic gates
and × denotes a multiplication in GF(28). For an element a in GF(28), {02}×a
and {04} × a require 3 and 5 XOR logic gates, respectively. The total number
of XOR gates and 2:1 selector gates required for multiplication by M0/M1 are
160 and 32.

In a 64-bit data path architecture, the 256-bit byte diffusion function BD
cannot be implemented only by simple wiring of byte data. We utilize the 64-
bit byte diffusion (BD) circuit, as shown in Fig. 2. It consists of byte wiring,
twenty-five 8-bit registers and thirteen 8-bit 2:1 selectors. 256-bit data, which
are input into the 64-bit BD circuit in four clock cycles, are output in the order
corresponding to BD by controlling selectors.

The round function circuit is shared for MSM and CPM , and processed by
repeating the following steps:

MSL (MSFL)→ CP (CPF )→ MSR (MSFR)→ CP (CPF )→ · · ·
The left 256-bit ML of a 512-bit message block is input in 64-bit blocks from
the 1st cycle to the 4th cycle, and then intermediate values of MSL (MSFL) are
stored in registers by repeating the following steps:

{R00, R01} → {R10, R11} → {R20, R21} → {R30, R31} → {R00, R01} →
{R10, R11} → {R20, R21} → {R30, R31} → {R40, R41} → 64-bit BD circuit→
{R50, R51} → {R60, R61} → {R70, R71} → {R80, R81} → · · ·

The right 256-bit MR of a 512-bit message block is input in 64-bit blocks from
the 9th cycle to the 12th cycle, and then intermediate values of MSR (MSFR)
are stored in registers by repeating the same order as MSL.



On the other hand, the chaining value stored in two 32-bit registers {C30, C31},
{C20, C21}, {C10, C11} and {C00, C01} is loaded via {C30, C31} from the 5th cycle
to the 8th cycle, and then 256-bit intermediate values of CP (CPF ) are stored
in registers by repeating the following steps:

{R40, R41} → 64-bit BD circuit→ {R50, R51} → {R60, R61} →
{R70, R71} → {R80, R81} → · · ·

Note that the chaining value to be fed forward is XORed into intermediate
values of MSR (MSFR) in advance from the 137th cycle to the 140th cycle,
which can reduce four cycles for updating the chaining value.

3 Evaluation Results

We show our evaluation results of AURORA-256 Type-H5 implementation. The
environment of our hardware design and evaluation is as follows.

Language Verilog-HDL
Design library 0.13 µm CMOS ASIC library
Simulator VCS version 2006.06
Logic synthesis Design Compiler version 2007.03-SP3

One gate is equivalent to a 2-way NAND and speed is evaluated under the
worst-case conditions. Table 1 represents the evaluation results of AURORA-
256 Type-H5 implementation together with those of AURORA-256 Type-H4
implementation and the best known results of SHA-224/256 [3]. For each imple-
mentation two types of circuits are synthesized by specifying either area or speed
optimization. In addition, we investigate the condition to maximize “Efficiency”
that indicates “Throughput” per area, which we call efficiency optimization.

The gate size of AURORA-256 Type-H5 implementation (8,870 gates) in
area optimization is about 20% and 23% smaller than that of AURORA-256
Type-H4 implementation (11,111 gates) and SHA-224/256 (11,484 gates). This
is the smallest gate size among so-called ”fully autonomous implementations” in
SHA-3 hardware implementations on the SHA-3 zoo website [2].

References

1. T. Iwata, K. Shibutani, T. Shirai, S. Moriai, and T. Akishita, “AURORA: A cryp-
tographic hash algorithm family.” In Submission to NIST, 2008.

2. SHA-3 Hardware Implementations on The SHA-3 Zoo website, http://ehash.iaik.
tugraz.at/wiki/SHA-3 Hardware Implementations

3. A. Satoh and T. Inoue, “ASIC-hardware-focused comparison for hash functions
MD5, RIPEMD-160, and SHS.” Integration, the VLSI Journal , Vol. 40, No. 1, pp. 3–
10, Jan. 2007.



Table 1. Evaluation Results of AURORA-256 Type-H5 implementation

Data Path Area Frequency Throughput Efficiency
Architecture Cycles [gates] [MHz] [Mbps] [Kbps/gate]

AURORA-256 Type-H5 144 8,870 304.8 1,084 122.2
(0.13µm) 9,970 509.3 1,811 181.6

9,970 509.3 1,811 181.6
Type-H4 72 11,111 306.4 2,179 196.1

14,255 475.3 3,380 237.1
12,257 423.6 3,012 245.7

SHA-224/256 - 72 11,484 154.1 1,096 95.4
(0.13µm) [3] 15,329 333.3 2,370 154.6

For each implementation, the 1st row and the 2nd row show the results of the synthe-
sized circuits by area and speed optimization, respectively. The 3rd row also shows the
results by efficiency optimization for each implementation of AURORA-256.


