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Executive Summary

We present a hash function family AURORA* which is a revised version of AURORA1. The
hash function family AURORA* consists of the four algorithms: AURORA-224, AURORA-
256, AURORA-384 version 2, AURORA-512 version 2. There is no change in the algorithms
of AURORA-224 and AURORA-256.

AURORA-224 and AURORA-256 are constructed from the secure and efficient compression
function using a security-enhanced Merkle-Damg̊ard transform, i.e., the strengthened Merkle-
Damg̊ard transform with the finalization function. The compression function is designed based on
the well-established design techniques for blockciphers, and uses the Davies-Meyer construction.
Since most of existing attacks on hash functions exploited simplicity of message scheduling, we
employ a secure message scheduling, which is a different design philosophy from the MDx family
including SHA-2.

AURORA-384 version 2 and AURORA-512 version 2 employ a double block-length (DBL) con-
struction proposed by Hirose. The Hirose’s DBL uses two blockciphers in a compression function.
This DBL construction enables to make an efficient collision-resistant hash function. Further-
more, the compression function achieves further efficiency by sharing the message scheduling of
two underlying blockciphers.

Moreover, the AURORA* family achieves high efficiency on many platforms. In software im-
plementation on the NIST reference platform (64-bit), AURORA-256 achieves 15.4 cycles/byte
and AURORA-512 version 2 achieves 37.8 cycles/byte. Also, AURORA* shows good performance
across a variety of platforms, because it uses platform-independent operations. In hardware im-
plementation, AURORA* enables a variety of implementations, from high-speed to area-restricted
implementations. Using a 0.13µm CMOS ASIC library, AURORA-256 can be implemented with
only 8.9 Kgates in an area-optimized implementation. In a speed-optimized implementation,
AURORA-256 achieves the highest throughput of 10.4 Gbps. For AURORA-512 version 2, the
smallest size is 12.4 Kgates and the highest throughput is 6.9 Gbps.

These good performance both in hardware and in software in a single hash function family
which is based on the above design techniques makes a clear distinction between the AURORA*
family and the SHA-2 family.

1The previous version AURORA is a first round candidate for a new cryptographic hash algorithm (SHA-3)
family.
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Chapter 1

Introduction

This document describes the algorithm specifications and supporting documentation including
design rationale, security, efficient implementation, applications, advantages and limitations of
the hash function family AURORA* which is a revised version of AURORA.

AURORA* is designed to preserve certain properties of the SHA-2 family including the input
parameters, the output sizes, collision resistance, preimage resistance, second-preimage resistance,
and the one-pass streaming mode of execution, according to the requirements for SHA-3 candi-
dates [39]. Moreover, AURORA* is designed to offer features that exceed the SHA-2 family.

AURORA* is designed based on the following design philosophy:

• Security: Its security level should be guaranteed by security proofs or security arguments
as far as possible.

– There is no known structural weakness in the design of the domain extension transform,
and the security of the hash function is supported by security proofs.

– In the design of a compression function, the structure and the components should be
chosen to facilitate analysis and to utilize the well-established techniques for blockcipher
design and analysis.

– It should be designed based on different design criteria from the MDx family including
SHA-2 so that a possibly successful attack on SHA-2 is unlikely to be applicable to it.

• Implementation Efficiency and Flexibility: It should be designed to have better effi-
ciency than the SHA-2 family on many platforms. Also, it should be designed to be less
platform-specific.

– It should be implemented efficiently in a wide range of software platforms (32-bit, 64-
bit and 8-bit processors with various compilers and operating systems) without too
dedicated optimization techniques for specific processors.

– It should be suitable to flexible hardware implementations with wide variety of area/speed
trade-offs.

• Originality: It should contain technical breakthroughs to improve security and/or efficiency,
not just a combination of existing techniques.

• Similarity among the Algorithm Family: According to the NIST requirements [39]
”NIST does not intend to select a wholly distinct algorithm for each of the minimally required
message digest sizes”, all the hash function instances with hash sizes of 224, 256, 384, and
512 bits should be designed under a consistent design philosophy. Concretely, by using the
same structure and components, e.g., S-boxes and matrices, they should provide security
arguments and performance evaluation in a unified framework.
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Table 1.1: AURORA* family.
Name max. message message block chaining value hash size

size (bits) size (bits) size (bits) (bits)
AURORA-224 512× (264 − 1) 512 256 224
AURORA-256 512× (264 − 1) 512 256 256
AURORA-384 version 2 512× (264 − 1) 512 512 384
AURORA-512 version 2 512× (264 − 1) 512 512 512

The hash function family AURORA*. To practice the design philosophy, we designed the
hash function family AURORA* which consists of the algorithms called AURORA-224, AURORA-
256, AURORA-384 version 2, and AURORA-512 version 2 supporting hash sizes of 224, 256, 384,
and 512 bits, respectively. Every instance of the AURORA* family supports a maximum message
length of 512× (264 − 1) bits, which meets the minimum acceptability requirement regarding the
maximum message length. Table 1.1 presents the basic properties of the AURORA* family.

AURORA-224 and AURORA-256 are constructed from the secure and efficient compression
function using a security-enhanced Merkle-Damg̊ard transform, i.e., the strengthened Merkle-
Damg̊ard transform with the finalization function [37, 15]. The compression function is designed
based on the well-established design techniques for blockciphers, and uses the Davies-Meyer con-
struction [38, 46, 17]. Since most of existing attacks on hash functions exploited simplicity of
message scheduling, we employ a secure message scheduling, which is a different design philosophy
from the MDx family including SHA-2.

AURORA-384 version 2 and AURORA-512 version 2 employ a double block-length (DBL)
construction proposed by Hirose. The Hirose’s DBL uses two blockciphers in a compression func-
tion [26, 27]. This DBL construction enables to make an efficient collision-resistant hash function.
Furthermore, the compression function achieves further efficiency by sharing the message schedul-
ing of two underlying blockciphers.

Moreover, the AURORA* family achieves high efficiency on many platforms. In software im-
plementation on the NIST reference platform (64-bit), AURORA-256 achieves 15.4 cycles/byte
and AURORA-512 version 2 achieves 37.8 cycles/byte. Also, AURORA* shows good performance
across a variety of platforms, because it uses platform-independent operations. In hardware im-
plementation, AURORA* enables a variety of implementations, from high-speed to area-restricted
implementations. Using a 0.13µm CMOS ASIC library, AURORA-256 can be implemented with
only 11.1 Kgates in an area-optimized implementation. In a speed-optimized implementation,
AURORA-256 achieves the highest throughput of 10.4 Gbps. For AURORA-512 version 2, the
smallest size is 12.4 Kgates and the highest throughput is 6.9 Gbps.

Organization of the document. This document is organized as follows: Chapter 2 describes
the specification of the AURORA* family. Chapter 3 provides the design rationale. Chapter
4 explains all aspects of security: security argument and algorithm analysis. Chapter 5 shows
efficient implementation results of AURORA*. Chapter 6 describes the usage of AURORA* in
important applications. Finally, AURORA*’s advantages and limitations are described in Chapter
7.
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Chapter 2

Specification of AURORA*

2.1 Notation

We first describe notation, conventions and symbols used throughout this document.

• We use the prefix 0x to denote hexadecimal numbers.

• A bit string x with the suffix, x(n), indicates that x is n bits. This suffix is omitted if there
is no ambiguity.

• For bit strings x and y, x ‖ y or (x, y) is their concatenation.

• For bit strings x and y, x ← y means that the bit string x is updated by the bit string y.
For an nl-bit x, we write (x0 (n), x1 (n), . . . , xl−1 (n)) ← x(nl) to mean that x is divided into
(x0, x1, . . . , xl), where (x0 (n) ‖x1 (n) ‖ · · · ‖xl−1 (n)) = x(nl).

• For a bit string x(n) and an integer l, x≪n l is the l-bit left cyclic shift of x, and x≫n l
is the l-bit right cyclic shift of x.

• For bit strings x0, x1, . . . , xn−1, {xj}0≤j<n is a shorthand for (x0, x1, . . . , xn−1).

• For an integer l, 0l is the l times repetition of zero bits and 1l is the l times repetition of
one bits.

• For a bit string x, x is the bit-wise complement of x.

• For an element of GF(2n) represented as a polynomial xn−1α
n−1 + xn−2α

n−2 + . . .+ x1α+
x0 where α is a root of an irreducible polynomial, xn−1||xn−2|| . . . ||x1||x0 denotes the bit
representation of the polynomial.
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Following variables and symbols have specific meanings.
M The input message.
Mi The i-th block of the message (after the padding).
m The length of M in blocks (after the padding).
Hi The i-th chaining value.
MSM The Message Scheduling Module.
BD The Byte Diffusion function.
PROTL The Partial ROTating Left function.
PROTR The Partial ROTating Right function.
Pad The Padding function.
Lenn The Length of the input message in blocks encoded into n bits.
TFn The Truncation Function that outputs n bits.
F0, F1, F2, and F3 The F-Functions.
M0, M1, M2, and M3 The matrices used in the F-functions.
S The S-box.

Following symbols are used for AURORA-224/256.
CPM The Chaining value Processing Module.
DR The Data Rotating function.
CF The Compression Function for AURORA-224/256.
FF The Finalization Function for AURORA-224/256.
MSL and MSR The Message Scheduling functions for CF .
MSFL and MSFR The Message Scheduling functions for FF .
CP The Chaining value Processing function for CF .
CPF The Chaining value Processing function for FF .
CONML,j and CONMR,j The CONstants for MSL, MSR, MSFL, and MSFR.
CONC j The CONstant for CP and CPF .

Following symbols are used for AURORA-384/512 version 2.
CPM 512 The Chaining value Processing Module.
DR512 The Data Rotating function.
PROTX The eXtra Partial ROTating function.
CF 512 The Compression Functions for AURORA-384/512 version 2.
FF 512 The Finalization Function for AURORA-384/512 version 2.
MS 512

L , MS 512
R and MS 512

X The Message Scheduling functions for CF 512 .
MSF 512

L , MSF 512
R and MSF 512

X The Message Scheduling functions for FF 512 .
CP512

L and CP512
R The Chaining value Processing function for CF 512 .

CPF 512
L and CPF 512

R The Chaining value Processing function for FF 512 .

CONM 512
L,j , CONM 512

R,j and CONM 512
X ,j The CONstants for MS 512

L , MS 512
R , MS 512

X , MSF 512
L , MSF 512

R

and MSF 512
X .

CONC 512
L,j and CONC 512

R,j The CONstant for CP512
L , CP512

R , CPF 512
L and CPF 512

R .
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2.2 Building Blocks

In this section, specifications of the essential building blocks for constructing AURORA* algo-
rithms are described.

2.2.1 Message Scheduling Module: MSM

The message scheduling module, MSM , takes the following two inputs;

• a bit string X(256), and

• a set of bit strings {Yj (32)}0≤j<32.

The output is a set of bit strings {Zj (32)}0≤j<72.
MSM internally uses a byte diffusion function BD : ({0, 1}32)8 → ({0, 1}32)8, which is a

permutation over ({0, 1}32)8 and is defined in Sec. 2.2.4. MSM is parameterized by two functions
F and F ′, where {

F : {0, 1}32 → {0, 1}32,
F ′ : {0, 1}32 → {0, 1}32.

(2.1)

We write MSM [F, F ′] when we emphasize that it is parameterized by functions F and F ′. We
now describe the specification of MSM [F, F ′].

Step 1. Let (X0 (32), X1 (32), . . . , X7 (32))← X(256).

Step 2. Let (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (Y0, Y1, Y2, Y3).

Step 3. Let (Z0, Z1, . . . , Z7)← (X0, X1, . . . , X7).

Step 4. (7 round iterations) The following operations are iterated for i = 1 to 7.




(X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
(X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (Y4i, Y4i+1, Y4i+2, Y4i+3)
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
(Z8i, Z8i+1, . . . , Z8i+7)← (X0, X1, . . . , X7)

Step 5. (8-th round) Then the following operations are executed.




(X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
(X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
(Z64, Z65, . . . , Z71)← (X0, X1, . . . , X7)

Step 6. Finally, the output is {Zj (32)}0≤j<72.

See Fig. 2.1 for an illustration and Fig. 2.12 for a pseudocode.

2.2.2 Chaining Value Processing Module: CPM

The chaining value processing module, CPM , takes the following three inputs;

• a bit string X(256),

• a set of bit strings {Yj (32)}0≤j<144, and

• a set of bit strings {Wj (32)}0≤j<68.
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F FF F

X0 X1 X2 X3 X4 X5 X6 X7

X

F FF F

F FF F

F FF F

F FF F

Y0 Y1 Y2 Y3

Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7

Y4 Y5 Y6 Y7

Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15

Y8 Y9 Y10 Y11

Z16 Z17 Z18 Z19 Z20 Z21 Z22 Z23

Y4i Y4i+1 Y4i+2 Y4i+3

Y28 Y29 Y30 Y31

Z56 Z57 Z58 Z59 Z60 Z61 Z62 Z63

Z64 Z65 Z66 Z67 Z68 Z69 Z70 Z71

Z8i Z8i+1 Z8i+2 Z8i+3 Z8i+4 Z8i+5 Z8i+6 Z8i+7

BD

BD

BD

BD

BD

Figure 2.1: {Zj (32)}0≤j<72 ← MSM [F, F ′](X(256), {Yj (32)}0≤j<32).
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The output is a bit string Z(256).
CPM internally uses a byte diffusion function BD , which is also used in MSM , and is defined

in Sec. 2.2.4. As with MSM , CPM is parameterized by two functions F and F ′ over {0, 1}32, and
we write CPM [F, F ′] when we use functions F and F ′.

We now describe the specification of CPM [F, F ′].

Step 1. Let (X0 (32), X1 (32), . . . , X7 (32))← X(256).

Step 2. Let (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (W0,W1,W2,W3).

Step 3. Let (X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y0, Y1, . . . , Y7).

Step 4. (16 round iterations) The following operations are iterated for i = 1 to 16.




(X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
(X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (W4i,W4i+1,W4i+2,W4i+3)
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
(X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y8i, Y8i+1, . . . , Y8i+7)

Step 5. (17-th round) Then the following operations are executed.




(X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
(X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
(X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y136, Y137, . . . , Y143)

Step 6. Finally, the output is Z(256) ← (X0 (32) ‖X1 (32) ‖ · · · ‖X7 (32)).

See Fig. 2.2 for an illustration and Fig. 2.13 for a pseudocode.

2.2.3 Chaining Value Processing Module: CPM 512

The chaining value processing module, CPM 512 , takes the following three inputs;

• a bit string X(256),

• a set of bit strings {Yj (32)}0≤j<216, and

• a set of bit strings {Wj (32)}0≤j<104.

The output is a bit string Z(256).
CPM 512 internally uses a byte diffusion function BD , which is also used in MSM , and is

defined in Sec. 2.2.4. As with MSM , CPM 512 is parameterized by two functions F and F ′ over
{0, 1}32, and we write CPM 512 [F, F ′] when we use functions F and F ′.

We now describe the specification of CPM 512 [F, F ′].

Step 1. Let (X0 (32), X1 (32), . . . , X7 (32))← X(256).

Step 2. Let (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (W0,W1,W2,W3).

Step 3. Let (X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y0, Y1, . . . , Y7).

Step 4. (25 round iterations) The following operations are iterated for i = 1 to 25.




(X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
(X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (W4i,W4i+1,W4i+2,W4i+3)
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
(X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y8i, Y8i+1, . . . , Y8i+7)
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W4i W4i+1 W4i+2 W4i+3
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BD
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BD

Figure 2.2: Z(256) ← CPM [F, F ′](X(256), {Yj (32)}0≤j<144, {Wj (32)}0≤j<68).
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Step 5. (26-th round) Then the following operations are executed.





(X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
(X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
(X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y208, Y209, . . . , Y215)

Step 6. Finally, the output is Z(256) ← (X0 (32) ‖X1 (32) ‖ · · · ‖X7 (32)).

See Fig. 2.3 for an illustration and Fig. 2.14 for a pseudocode.

2.2.4 Byte Diffusion Function: BD

The byte diffusion function, BD , takes a bit string (X0 (32), X1 (32), . . . , X7 (32)) as the input, and
outputs the updated bit string (X0 (32), X1 (32), . . . , X7 (32)).

It works as follows.

Step 1. For i = 0, 1, . . . , 7, Xi (32) is divided into a 4-byte sequence as

(x4i (8), x4i+1 (8), x4i+2 (8), x4i+3 (8))← Xi (32),

and (X0 (32), X1 (32), . . . , X7 (32)) is now regarded as a sequence of bytes;

(x0 (8), x1 (8), . . . , x31 (8)) = (X0 (32), X1 (32), . . . , X7 (32)).

Step 2. Next we permute (x0, x1, . . . , x31) according to the permutation π defined in Fig. 2.4,
where the i-th byte xi is moved to the π(i)-th byte. In other words, let x′π(i) = xi for
i = 0, 1, . . . , 31. Then (x′0, x

′
1, . . . , x

′
31) is the result of the permutation. For example,

x′0 = x4, x′1 = x29, and so on.

Step 3. For i = 0, 1, . . . , 7, the 4-byte sequence (x′4i (8), x
′
4i+1 (8), x

′
4i+2 (8), x

′
4i+3 (8)) is concate-

nated to form the updated Xi (32) = (x′4i (8) ‖x′4i+1 (8) ‖x′4i+2 (8) ‖x′4i+3 (8)), and the output
is (X0 (32), X1 (32), . . . , X7 (32)).

See Fig. 2.5 for an illustration and Fig. 2.15 for a pseudocode.

2.2.5 F-Functions: F0, F1, F2, and F3

We use four F-functions, F0, F1, F2, and F3, where they take 32-bit input X as input and produce
32-bit output Y . Each function is used as an instantiation of a parameter functions F or F ′ in
MSM and CPM .

Before defining these F-functions, we first define the S-box S : {0, 1}8 → {0, 1}8, and four 4×4
matrices, M0, M1, M2 and M3.

• The S-box S : x(8) → y(8) is defined as follows.

y =
{
g(f(x)−1) if f(x) 6= 0
g(0) if f(x) = 0 .

The inverse function is performed in GF((24)2) defined by an irreducible polynomial z2 +z+
{1001} for which the underlying GF(24) is defined by an irreducible polynomial z′4 + z′+ 1.
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Figure 2.3: Z(256) ← CPM 512 [F, F ′](X(256), {Yj (32)}0≤j<216, {Wj (32)}0≤j<104).
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(i) 28 29 30 31 0 9 18 27 4 5 6 7 8 17 26 3
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

π(i) 12 13 14 15 16 25 2 11 20 21 22 23 24 1 10 19

Figure 2.4: Definition of the permutation π(·) : {0, 1, . . . , 31} → {0, 1, . . . , 31}.

X0 X1 X2 X3 X4 X5 X6 X7

X0 X1 X2 X3 X4 X5 X6 X7

Figure 2.5: (X0 (32), X1 (32), . . . , X7 (32))← BD(X0 (32), X1 (32), . . . , X7 (32)).

Moreover, f : x(8) → y(8) and g : x(8) → y(8) are affine transformations over GF(2), which
are defined as

f :




y0

y1

y2

y3

y4

y5

y6

y7




=




0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0







x0

x1

x2

x3

x4

x5

x6

x7




+




0
1
1
1
0
1
0
0




, (2.2)

and

g :




y0

y1

y2

y3

y4

y5

y6

y7




=




1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0







x0

x1

x2

x3

x4

x5

x6

x7




+




1
0
1
1
0
0
1
0




(2.3)

where (x0(1)||x1(1)||x2(1)||x3(1)||x4(1)||x5(1)||x6(1)||x7(1)) ← x(8) and (y0(1)||y1(1)||y2(1)||y3(1)

||y4(1)||y5(1)||y6(1)||y7(1)) ← y(8). Table 2.1 shows the output values of S.

• The four matrices are defined as follows.

M0 =




0x01 0x02 0x02 0x03
0x03 0x01 0x02 0x02
0x02 0x03 0x01 0x02
0x02 0x02 0x03 0x01


 , (2.4)
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Table 2.1: S

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. d9 dc d3 69 bd 00 4d eb 02 24 57 c2 b8 5d b7 6d

1. f5 40 37 4e 19 d8 64 62 9d 34 0f 7c ec ce 94 04

2. d1 8a 74 fb e7 87 12 23 b5 5c 1a bb 42 49 18 85

3. 11 46 0d 71 67 8f c6 50 58 fd 4b a4 cd 8e 99 1f

4. ad 63 c9 6b f7 28 9f 65 2f 5f 61 73 3d 8b 0e 1b

5. 33 e0 ac 26 a1 e3 f3 82 83 75 44 90 13 af f0 07

6. 96 21 f8 3f a2 98 9a a3 91 4c 7f 92 97 ea 01 1c

7. 1e 2d 89 39 e6 9c 0a 54 0c 51 6c 43 ae db 53 59

8. a6 f4 06 da e2 78 1d 29 30 e1 35 fc ed bc 47 d5

9. c0 ab cc a8 80 2b 09 b0 93 d4 c5 b3 d0 df a9 aa

a. 7a 36 2a d6 b2 fa e8 b1 a0 68 5a 81 48 08 17 c7

b. fe 76 bf c4 f2 3e 4a 0b 10 14 f1 ef a7 27 e5 c8

c. de 9b 8d 3c 56 d7 8c 60 6a 79 ee a5 31 2e 77 41

d. ff 95 dd 25 3b 55 ca 52 9e 2c 15 4f e4 16 70 7d

e. 72 3a 7b 84 f6 32 86 03 b4 38 6f b9 c1 45 88 e9

f. ba b6 6e 5e be 7e 20 f9 22 66 05 d2 cb c3 cf 5b

M1 =




0x01 0x06 0x08 0x02
0x02 0x01 0x06 0x08
0x08 0x02 0x01 0x06
0x06 0x08 0x02 0x01


 , (2.5)

M2 =




0x03 0x01 0x02 0x02
0x02 0x03 0x01 0x02
0x02 0x02 0x03 0x01
0x01 0x02 0x02 0x03


 , (2.6)

M3 =




0x06 0x08 0x02 0x01
0x01 0x06 0x08 0x02
0x02 0x01 0x06 0x08
0x08 0x02 0x01 0x06


 . (2.7)

Multiplications are operated over GF(28) defined by an irreducible polynomial z8 +z4 +z3 +z2 +1.

Now we describe F-functions.

Step 1. Let (x0 (8), x1 (8), x2 (8), x3 (8))← X(32).

Step 2. Let (x0, x1, x2, x3)← (S(x0), S(x1), S(x2), S(x3)).

Step 3. For i ∈ {0, 1, 2, 3}, the output of Fi is Y(32) = (y0 (8) ‖ y1 (8) ‖ y2 (8) ‖ y3 (8)), where



y0

y1

y2

y3


 =Mi




x0

x1

x2

x3


 .

2.2.6 Data Rotating Function: DR

The data rotating function, DR, takes the following two inputs;

• a set of bit strings {Xj (32)}0≤j<72, and

• a set of bit strings {Yj (32)}0≤j<72.
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The output is a set of bit strings {Zj (32)}0≤j<144.
DR uses the following two functions;

{
PROTL : ({0, 1}32)8 → ({0, 1}32)8,
PROTR : ({0, 1}32)8 → ({0, 1}32)8,

which we define as

PROTL(X0 (32), X1 (32), . . . , X7 (32)) = (X ′0 (32), X
′
1 (32), . . . , X

′
7 (32)), (2.8)

where X ′i = Xi for i = 0, 2, 4, 5, 6, 7, and (X ′1 ‖X ′3) = (X1 ‖X3)≪64 1.
Similarly, we define

PROTR(X0 (32), X1 (32), . . . , X7 (32)) = (X ′0 (32), X
′
1 (32), . . . , X

′
7 (32)), (2.9)

where X ′i = Xi for i = 0, 2, 4, 5, 6, 7, and (X ′1 ‖X ′3) = (X1 ‖X3)≫64 1.
In other words, they rotate the two words by one bit, where these words are concatenated and

regarded as one 64 bit string.
Now DR works as follows.

Step 1. For inputs {Xj (32)}0≤j<72 and {Yj (32)}0≤j<72, we define {Zj (32)}0≤j<144 by iterating
the following operations for i = 0 to 8.

{
(Z16i, Z16i+1, . . . , Z16i+7)← PROTL(X8i, X8i+1, . . . , X8i+7)
(Z16i+8, Z16i+9, . . . , Z16i+15)← PROTR(Y8i, Y8i+1, . . . , Y8i+7)

Step 2. The output is {Zj (32)}0≤j<144 defined in the above operations.

See Fig. 2.6 for an illustration and Fig. 2.16 for a pseudocode.

X0 X1 · · · X7 → (Z1 ‖Z3) ← (X1 ‖X3)≪64 1 → Z0 Z1 · · · Z7

Y0 Y1 · · · Y7 → (Z9 ‖Z11) ← (Y1 ‖Y3)≫64 1 → Z8 Z9 · · · Z15

X8 X9 · · · X15 → (Z17 ‖Z19) ← (X9 ‖X11)≪64 1 → Z16 Z17 · · · Z23

Y8 Y9 · · · Y15 → (Z25 ‖Z27) ← (Y9 ‖Y11)≫64 1 → Z24 Z25 · · · Z31

X16 X17 · · · X23 → (Z33 ‖Z35) ← (X17 ‖X19)≪64 1 → Z32 Z33 · · · Z39

Y16 Y17 · · · Y23 → (Z41 ‖Z43) ← (Y17 ‖Y19)≫64 1 → Z40 Z41 · · · Z47

...
...

...
...

...
...

...

X64 X65 · · · X71 → (Z129 ‖Z131) ← (X65 ‖X67)≪64 1 → Z128 Z129 · · · Z135

Y64 Y65 · · · Y71 → (Z137 ‖Z139) ← (Y65 ‖Y67)≫64 1 → Z136 Z137 · · · Z143

Figure 2.6: {Zj (32)}0≤j<144 ← DR({Xj (32)}0≤j<72, {Yj (32)}0≤j<72).

2.2.7 Data Rotating Function: DR512

The data rotating function, DR512 , takes the following three inputs;

• a set of bit strings {Xj (32)}0≤j<72,

• a set of bit strings {Yj (32)}0≤j<72, and

• a set of bit strings {Wj (32)}0≤j<72.

19



The output is a set of bit strings {Zj (32)}0≤j<216.
DR512 uses the following three functions;





PROTL : ({0, 1}32)8 → ({0, 1}32)8,
PROTR : ({0, 1}32)8 → ({0, 1}32)8,
PROTX : ({0, 1}32)8 → ({0, 1}32)8.

PROTL and PROTR are defined as (2.8) and (2.9), and PROTX is defined as

PROTX (X0 (32), X1 (32), . . . , X7 (32)) = (X ′0 (32), X
′
1 (32), . . . , X

′
7 (32)), (2.10)

where X ′i = Xi for i = 0, 2, 4, 5, 6, 7, and (X ′1 ‖X ′3) = (X1 ‖X3)≪64 2.
Now DR512 works as follows.

Step 1. For inputs {Xj (32)}0≤j<72, {Yj (32)}0≤j<72 and {Wj (32)}0≤j<72, we define {Zj (32)}0≤j<216

by iterating the following operations for i = 0 to 8.




(Z24i, Z24i+1, . . . , Z24i+7)← PROTL(X8i, X8i+1, . . . , X8i+7)
(Z24i+8, Z24i+9, . . . , Z24i+15)← PROTR(Y8i, Y8i+1, . . . , Y8i+7)
(Z24i+16, Z24i+17, . . . , Z24i+23)← PROTX (W8i,W8i+1, . . . ,W8i+7)

Step 2. The output is {Zj (32)}0≤j<216 defined in the above operations.

See Fig. 2.7 for an illustration and Fig. 2.17 for a pseudocode.

X0 X1 · · · X7 → (Z1 ‖Z3) ← (X1 ‖X3)≪64 1 → Z0 Z1 · · · Z7

Y0 Y1 · · · Y7 → (Z9 ‖Z11) ← (Y1 ‖Y3)≫64 1 → Z8 Z9 · · · Z15

W0 W1 · · · W7 → (Z17 ‖Z19) ← (W1 ‖W3)≪64 2 → Z16 Z17 · · · Z23

X8 X9 · · · X15 → (Z25 ‖Z27) ← (X9 ‖X11)≪64 1 → Z24 Z25 · · · Z31

Y8 Y9 · · · Y15 → (Z33 ‖Z35) ← (Y9 ‖Y11)≫64 1 → Z32 Z33 · · · Z39

W8 W9 · · · W15 → (Z41 ‖Z43) ← (W9 ‖W11)≪64 2 → Z40 Z41 · · · Z47

...
...

...
...

...
...

...

X64 X65 · · · X71 → (Z193 ‖Z195) ← (X65 ‖X67)≪64 1 → Z192 Z193 · · · Z199

Y64 Y65 · · · Y71 → (Z201 ‖Z203) ← (Y65 ‖Y67)≫64 1 → Z200 Z201 · · · Z207

W64 W65 · · · W71 → (Z209 ‖Z211) ← (W65 ‖W67)≪64 2 → Z208 Z209 · · · Z215

Figure 2.7: {Zj (32)}0≤j<216 ← DR512 ({Xj (32)}0≤j<72, {Yj (32)}0≤j<72, {Wj (32)}0≤j<72).
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2.3 Specification of AURORA-256

2.3.1 Overall Structure

AURORA-256 takes the input message of length at most 512 × (264 − 1) = 273 − 512 bits, and
outputs the hash value of 256 bits. It internally uses a compression function CF and a finalization
function FF , where {

CF (·, ·) : {0, 1}256 × {0, 1}512 → {0, 1}256,
FF (·, ·) : {0, 1}256 × {0, 1}512 → {0, 1}256.

The compression function CF is defined in Sec. 2.3.2 and a finalization function FF is defined in
Sec. 2.3.3.

Now AURORA-256 works as follows.

Step 1. The input message M is padded with the following padding function Pad(·);

Pad(M) = M ‖ 1 ‖ 0b ‖Len64, (2.11)

where b is the minimum non-negative integer (possibly zero) such that |M |+ b+ 65 = 512m
for some integer m, and Len64 is an encoding of d|M |/512e in 64-bit string. That is, Len64

is the length of M in blocks, where a partial block counts for one block, and b is the minimal
integer such that the total length of Pad(M) is a multiple of 512 bits. Then Pad(M) is
divided into blocks M0,M1, . . . ,Mm−1 each of length 512 bits, i.e., we let

(M0 (512),M1 (512), . . . ,Mm−1 (512))← Pad(M).

Step 2. Let H0 (256) = 0256, and compute H1 (256),H2 (256), . . . , Hm−1 (256) by iterating

Hi+1 ← CF (Hi,Mi)

for i = 0 to m− 2.

Note that when Pad(M) has one block (i.e., when m = 1 and Pad(M) = M0), then Step 2
is not executed.

Step 3. Finally, let Hm ← FF (Hm−1,Mm−1), and the output is Hm (256).

See Fig. 2.8 for an illustration and Fig. 2.18 for a pseudocode.

CF FFH0

M0 Mm−2 Mm−1

Hm−2 Hm−1

M1 M2

H1 H2 H3

Hm
CF CF CF

Figure 2.8: AURORA-256.

2.3.2 Compression Function: CF

The compression function, CF , takes the chaining value Hi of 256 bits and the input message
block Mi of 512 bits, and outputs the chaining value Hi+1 of 256 bits.
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It internally uses two message scheduling functions MSL and MSR, a data rotating function
DR, and a chaining value processing function CP , where





MSL(·) : {0, 1}256 → ({0, 1}32)72,
MSR(·) : {0, 1}256 → ({0, 1}32)72,
DR(·, ·) : ({0, 1}32)72 × ({0, 1}32)72 → ({0, 1}32)144,
CP(·, ·) : {0, 1}256 × ({0, 1}32)144 → {0, 1}256.

These functions are described below.

Components of CF

• MSL is an instance of MSM described in Sec. 2.2.1, and for any X ∈ {0, 1}256, it is defined
as

MSL(X) = MSM [F0, F1](X, {CONML,j (32)}0≤j<32), (2.12)

where F0 and F1 are F-functions defined in Sec. 2.2.5, and {CONML,j (32)}0≤j<32 is the set
of constants defined in Sec. 2.7.

• Similarly, for any X ∈ {0, 1}256, MSR is defined as

MSR(X) = MSM [F2, F3](X, {CONMR,j (32)}0≤j<32), (2.13)

where F2 and F3 are F-functions defined in Sec. 2.2.5, and {CONMR,j (32)}0≤j<32 is the set
of constants defined in Sec. 2.7.

• DR is the data rotating function defined in Sec. 2.2.6.

• CP is an instance of CPM described in Sec. 2.2.2, and for any X ∈ {0, 1}256 and Y ∈
({0, 1}32)144, it is defined as

CP(X,Y ) = CPM [F1, F0](X,Y, {CONC j (32)}0≤j<68), (2.14)

where F0 and F1 are F-functions defined in Sec. 2.2.5, and {CONC j (32)}0≤j<68 is the set of
constants defined in Sec. 2.7.

Specification of CF

Now we present the specification of CF .

Step 1. Let (ML (256),MR (256))←Mi (512), and let X(256) ← Hi (256).

Step 2. Let {TL,j (32)}0≤j<72 ← MSL(ML (256)).

Step 3. Let {TR,j (32)}0≤j<72 ← MSR(MR (256)).

Step 4. Let {Uj (32)}0≤j≤144 ← DR({TL,j (32)}0≤j<72, {TR,j (32)}0≤j<72).

Step 5. Let Y(256) ← CP(X(256), {Uj (32)}0≤j<144).

Step 6. Finally, the output is Hi+1 (256) ← Y(256) ⊕X(256).

See Fig. 2.9 for an illustration and Fig. 2.19 for a pseudocode.
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Figure 2.9: Hi+1 (256) ← CF (Hi (256),Mi (512)).

2.3.3 Finalization Function: FF

The finalization function, FF , is used at the last step of the hash value computation. It takes the
chaining value Hm−1 of 256 bits and the last input message block Mm−1 of 512 bits, and outputs
the final hash value Hm of 256 bits.

FF is structurally equivalent to CF , and the only difference is the constants used in the
components.

FF internally uses message scheduling functions for finalization, MSFL and MSFR, a data
rotating function DR, and a chaining value processing function for finalization, CPF . They have
the following syntax.





MSFL(·) : {0, 1}256 → ({0, 1}32)72,
MSFR(·) : {0, 1}256 → ({0, 1}32)72,
DR(·, ·) : ({0, 1}32)72 × ({0, 1}32)72 → ({0, 1}32)144,
CPF (·, ·) : {0, 1}256 × ({0, 1}32)144 → {0, 1}256.

(2.15)

These functions are described below.

Components of FF

• For any X ∈ {0, 1}256, MSFL is defined as

MSFL(X) = MSM [F0, F1](X, {CONML,j (32)}32≤j<64), (2.16)

where F0 and F1 are F-functions defined in Sec. 2.2.5, and {CONML,j (32)}32≤j<64 is the set
of constants defined in Sec. 2.7.

• For any X ∈ {0, 1}256, MSFR is defined as

MSFR(X) = MSM [F2, F3](X, {CONMR,j (32)}32≤j<64), (2.17)

where F2 and F3 are F-functions defined in Sec. 2.2.5, and {CONMR,j (32)}32≤j<64 is the set
of constants defined in Sec. 2.7.
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• DR is the data rotating function defined in Sec. 2.2.6.

• For any X ∈ {0, 1}256 and Y ∈ ({0, 1}32)144, CPF is defined as

CPF (X,Y ) = CPM [F1, F0](X,Y, {CONC j (32)}68≤j<136), (2.18)

where F0 and F1 are F-functions defined in Sec. 2.2.5, and {CONC j (32)}68≤j<136 is the set
of constants defined in Sec. 2.7.

Specification of FF

Now the finalization function FF works as follows.

Step 1. Let (ML (256),MR (256))←Mm−1 (512), and let X(256) ← Hm−1 (256).

Step 2. Let {TL,j (32)}0≤j<72 ← MSFL(ML (256)).

Step 3. Let {TR,j (32)}0≤j<72 ← MSFR(MR (256)).

Step 4. Let {Uj (32)}0≤j≤144 ← DR({TL,j (32)}0≤j<72, {TR,j (32)}0≤j<72).

Step 5. Let Y(256) ← CPF (X(256), {Uj (32)}0≤j<144).

Step 6. Finally, the output is Hm (256) ← Y(256) ⊕X(256).

See Fig. 2.20 for a pseudocode.
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2.3.4 Alternate Method for Computing CF and FF

The compression function CF and the finalization function FF , components of AURORA-256
hash computation method, are described in an alternative way which requires less memory space
in implementation. Firstly, three component functions RoundC ,RoundML and RoundMR are
defined here for an alternate computation method.

Components RoundC ,RoundML and RoundMR

RoundC (i)(·) : ({0, 1}32)8 → ({0, 1}32)8 is a round function of the structure for CP . Now we
present the computation steps of RoundC (i)(·).

RoundC (i)(X0, X1, . . . , X7) :



(X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
(X0, X2, X4, X6)← (F1(X0), F0(X2), F1(X4), F0(X6))
If i 6= 17, do the following line

(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (CONC 4i,CONC 4i+1,CONC 4i+2,CONC 4i+3)
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
Output (X0, X1, . . . , X7)

Similarly, round functions RoundML and RoundMR for MSL and MSR are defined by replacing
F-functions and constants as follows.

RoundM (i)
L (X0, X1, . . . , X7) :




(X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
(X0, X2, X4, X6)← (F0(X0), F1(X2), F0(X4), F1(X6))
If i 6= 8, do the following line

(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (CONML,4i,CONML,4i+1,CONML,4i+2,CONML,4i+3)
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
Output (X0, X1, . . . , X7)

RoundM (i)
R (X0, X1, . . . , X7) :




(X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
(X0, X2, X4, X6)← (F2(X0), F3(X2), F2(X4), F3(X6))
If i 6= 8, do the following line

(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (CONMR,4i,CONMR,4i+1,CONMR,4i+2,CONMR,4i+3)
(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
Output (X0, X1, . . . , X7)

Alternative Specification of CF

Now we present an alternative computation method of CF .

Step 1. Initialize input values.
{

(X0(32), X1(32), . . . , X7(32), Y0(32), Y1(32), . . . , Y7(32))←Mi(512)

(Z0(32), Z1(32), . . . , Z7(32))← Hi (256)

Step 2. Add constant values to the initial values.




(X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (CONML,0,CONML,1,CONML,2,CONML,3)
(Y1, Y3, Y5, Y7)← (Y1, Y3, Y5, Y7)⊕ (CONMR,0,CONMR,1,CONMR,2,CONMR,3)
(Z1, Z3, Z5, Z7)← (Z1, Z3, Z5, Z7)⊕ (CONC 0,CONC 1,CONC 2,CONC 3)
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Step 3. Do the first round function.




(Z0, Z1, . . . , Z7)← (Z0, Z1, . . . , Z7)⊕ (X0, X
′
1, X2, X

′
3, X4, X5, X6, X7)

(Z0, Z1, . . . , Z7)← RoundC (1)(Z0, Z1, . . . , Z7)
(Z0, Z1, . . . , Z7)← (Z0, Z1, . . . , Z7)⊕ (Y0, Y

′
1 , Y2, Y

′
3 , Y4, Y5, Y6, Y7)

Step 4. The following operations are iterated for j = 1 to 8.




(X0, X1, . . . , X7)← RoundM (j)
L (X0, X1, . . . , X7)

(Y0, Y1, . . . , Y7)← RoundM (j)
R (Y0, Y1, . . . , Y7)

(Z0, Z1, . . . , Z7)← RoundC (2j)(Z0, Z1, . . . , Z7)
(Z0, Z1, . . . , Z7)← (Z0, Z1, . . . , Z7)⊕ (X0, X

′
1, X2, X

′
3, X4, X5, X6, X7)

(Z0, Z1, . . . , Z7)← RoundC (2j+1)(Z0, Z1, . . . , Z7)
(Z0, Z1, . . . , Z7)← (Z0, Z1, . . . , Z7)⊕ (Y0, Y

′
1 , Y2, Y

′
3 , Y4, Y5, Y6, Y7)

Step 5. Finally, the output is Hi+1 (256) ← (Z0, Z1, . . . , Z7)⊕Hi.

In the above specification, X ′1, X
′
3, Y

′
1 and Y ′3 are defined as (X ′1 ‖X ′3) = (X1 ‖X3)≪64 1 and

(Y ′1 ‖Y ′3) = (Y1 ‖Y3)≫64 1.

Alternative Specification of FF

An alternative specification of FF is obtained by replacing constants in the specification of CF as
CONC j ← CONC j+32, CONML,j ← CONML,j+32 and CONMR,j ← CONMR,j+32.
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2.4 Specification of AURORA-224

AURORA-224 takes the input message of length at most 512 × (264 − 1) = 273 − 512 bits, and
outputs the hash value of 224 bits. It uses the same padding function Pad , the compression
function CF , and the finalization function FF as AURORA-256 defined in Sec. 2.3.

The difference is that AURORA-224 uses H0 = 1256 as the initial value, and the output of FF
is truncated to 224 bits by the truncation function TF 224.

The truncation function, TF 224(·) : {0, 1}256 → {0, 1}224, first parses the input Hm (256) into
a sequence of bytes Hm (256) = (m0 (8),m1 (8), . . . ,m31 (8)) and drops m7, m15, m23, and m31 to
produce the 224-bit hash valueH ′m (224) = (m′0 (8),m

′
1 (8), . . . ,m

′
27 (8)). That is, for the 256-bit input

Hm (256) = (m0 (8),m1 (8), . . . ,m31 (8)), the 224-bit output is H ′m (224) = (m′0 (8),m
′
1 (8), . . . ,m

′
27 (8)),

where 



m′i = mi for 0 ≤ i ≤ 6
m′i = mi+1 for 7 ≤ i ≤ 13
m′i = mi+2 for 14 ≤ i ≤ 20
m′i = mi+3 for 21 ≤ i ≤ 27

Now we describe the specification of AURORA-224.

Step 1. The input message M is first padded with Pad(·) in (2.11), and the result of Pad(M) is
divided into blocks M0,M1, . . . ,Mm−1 each of length 512 bits, i.e., let

(M0 (512),M1 (512), . . . ,Mm−1 (512))← Pad(M).

Step 2. Let H0 (256) = 1256, and compute H1 (256),H2 (256), . . . , Hm−1 (256) by iterating

Hi+1 ← CF (Hi,Mi)

for i = 0 to m− 2.

Note that when Pad(M) has one block (i.e., when m = 1 and Pad(M) = M0), then Step 2
is not executed.

Step 3. Let Hm ← FF (Hm−1,Mm−1), and the output is H ′m (224) ← TF 224(Hm (256)).

See Fig. 2.21 for a pseudocode.
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2.5 Specification of AURORA-512 version 2

2.5.1 Overall Structure

AURORA-512 version 2 takes the input message of length at most 512 × (264 − 1) = 273 − 512
bits, and outputs the hash value of 512 bits. It internally uses a compression function CF 512 and
a finalization function FF 512 , where

{
CF 512 (·, ·) : {0, 1}512 × {0, 1}512 → {0, 1}512,
FF 512 (·, ·) : {0, 1}512 × {0, 1}512 → {0, 1}512.

The compression function CF 512 is defined in Sec. 2.5.2 and a finalization function FF 512 is
defined in Sec. 2.5.3.

Now AURORA-512 version 2 works as follows.

Step 1. The input message M is padded with the padding function Pad(·). Then Pad(M) is
divided into blocks M0,M1, . . . ,Mm−1 each of length 512 bits, i.e., we let

(M0 (512),M1 (512), . . . ,Mm−1 (512))← Pad(M).

Step 2. Let H0 (512) = 0512, and compute H1 (512),H2 (512), . . . , Hm−1 (512) by iterating

Hi+1 ← CF 512 (Hi,Mi)

for i = 0 to m− 2.

Note that when Pad(M) has one block (i.e., when m = 1 and Pad(M) = M0), then Step 2
is not executed.

Step 3. Finally, let Hm ← FF 512 (Hm−1,Mm−1), and the output is Hm (512).

See Fig. 2.10 for an illustration and Fig. 2.22 for a pseudocode.

CF FFH0

M0 Mm−2 Mm−1

Hm−2 Hm−1

M1 M2

H1 H2 H3

Hm
CF CF CF

512 512 512 512 512

Figure 2.10: AURORA-512 version 2.

2.5.2 Compression Functions: CF 512

The compression function, CF 512 , takes the chaining value Hi of 512 bits and the input message
block Mi of 512 bits, and outputs the chaining value Hi+1 of 512 bits.

It internally uses three message scheduling functions MS 512
L , MS 512

R and MS 512
X , a data rotating

function DR512 , and a chaining value processing functions CP512
L and CP512

R , where




MS 512
L (·) : {0, 1}256 → ({0, 1}32)72,

MS 512
R (·) : {0, 1}256 → ({0, 1}32)72,

MS 512
X (·) : {0, 1}256 → ({0, 1}32)72,

DR512 (·, ·) : ({0, 1}32)72 × ({0, 1}32)72 × ({0, 1}32)72 → ({0, 1}32)216,
CP512

L (·, ·) : {0, 1}256 × ({0, 1}32)216 → {0, 1}256,
CP512

R (·, ·) : {0, 1}256 × ({0, 1}32)216 → {0, 1}256.

These functions are described below.
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Components of CF 512

• MS 512
L is an instance of MSM described in Sec. 2.2.1, and for any X ∈ {0, 1}256, it is defined

as
MS 512

L (X) = MSM [F0, F1](X, {CONM 512
L,j }0≤j<32), (2.19)

where F0 and F1 are F-functions defined in Sec. 2.2.5, and {CONM 512
L,j }0≤j<32 is the set of

constants defined in Sec. 2.7.

• Similarly, for any X ∈ {0, 1}256, MS 512
R is defined as

MS 512
R (X) = MSM [F2, F3](X, {CONM 512

R,j }0≤j<32), (2.20)

where F2 and F3 are F-functions defined in Sec. 2.2.5, and {CONM 512
R,j }0≤j<32 is the set of

constants defined in Sec. 2.7.

• Also, for any X ∈ {0, 1}256, MS 512
X is defined as

MS 512
X (X) = MSM [F0, F3](X, {CONM 512

X ,j }0≤j<32), (2.21)

where F0 and F3 are F-functions defined in Sec. 2.2.5, and {CONM 512
X ,j }0≤j<32 is the set of

constants defined in Sec. 2.7.

• DR512 is the data rotating function defined in Sec. 2.2.7.

• CP512
L is an instance of CPM 512 described in Sec. 2.2.3, and for any X ∈ {0, 1}256 and

Y ∈ ({0, 1}32)216, it is defined as

CP512
L (X,Y ) = CPM 512 [F1, F0](X,Y, {CONC 512

L,j }0≤j<104), (2.22)

where F0 and F1 are F-functions defined in Sec. 2.2.5, and {CONC 512
L,j }0≤j<104 is the set of

constants defined in Sec. 2.7.

• CP512
R is an instance of CPM 512 described in Sec. 2.2.3, and for any X ∈ {0, 1}256 and

Y ∈ ({0, 1}32)216, it is defined as

CP512
R (X,Y ) = CPM 512 [F3, F2](X,Y, {CONC 512

R,j }0≤j<104), (2.23)

where F2 and F3 are F-functions defined in Sec. 2.2.5, and {CONC 512
R,j }0≤j<104 is the set of

constants defined in Sec. 2.7.

Specification of CF 512

Now we present the specification of CF 512 .

Step 1. Let (ML (256),MR (256))←Mi (512), and let (XL(256), XR(256))← Hi (512).

Step 2. Let {TL,j (32)}0≤j<72 ← MS 512
L (ML (256)).

Step 3. Let {TR,j (32)}0≤j<72 ← MS 512
R (MR (256)).

Step 4. Let {TX,j (32)}0≤j<72 ← MS 512
X (XL (256)).

Step 5. Let {Uj (32)}0≤j<216 ← DR512 ({TL,j (32)}0≤j<72, {TR,j (32)}0≤j<72, {TX,j (32)}0≤j<72).

Step 6. Let YL(256) ← CP512
L (XR(256), {Uj (32)}0≤j<216).

Step 7. Let YR(256) ← CP512
R (XR(256), {Uj (32)}0≤j<216).

Step 8. Finally, the output is Hi+1 (512) ← (YL(256) ⊕XR(256)||YR(256) ⊕XR(256)).

See Fig. 2.11 for an illustration and Fig. 2.23 for a pseudocode.
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Figure 2.11: Hi+1 (512) ← CF 512 (Hi (512),Mi (512)).
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2.5.3 Finalization Functions: FF 512

The finalization function, FF 512 , takes the chaining value Hm−1 of 512 bits and the input message
block Mm−1 of 512 bits, and outputs the final hash value Hm of 512 bits.

FF 512 is structurally equivalent to CF 512 , and the only difference is the constants used in the
components.

It internally uses three message scheduling functions MSF 512
L , MSF 512

R and MSF 512
X , a data

rotating function DR512 , and a chaining value processing functions CPF 512
L and CPF 512

R , where




MSF 512
L (·) : {0, 1}256 → ({0, 1}32)72,

MSF 512
R (·) : {0, 1}256 → ({0, 1}32)72,

MSF 512
X (·) : {0, 1}256 → ({0, 1}32)72,

DR512 (·, ·) : ({0, 1}32)72 × ({0, 1}32)72 × ({0, 1}32)72 → ({0, 1}32)216,
CPF 512

L (·, ·) : {0, 1}256 × ({0, 1}32)216 → {0, 1}256,
CPF 512

R (·, ·) : {0, 1}256 × ({0, 1}32)216 → {0, 1}256.

These functions are described below.

Components of FF 512

• MSF 512
L is an instance of MSM described in Sec. 2.2.1, and for any X ∈ {0, 1}256, it is

defined as
MSF 512

L (X) = MSM [F0, F1](X, {CONM 512
L,j }32≤j<64), (2.24)

where F0 and F1 are F-functions defined in Sec. 2.2.5, and {CONM 512
L,j }32≤j<64 is the set of

constants defined in Sec. 2.7.

• Similarly, for any X ∈ {0, 1}256, MS 512
R is defined as

MSF 512
R (X) = MSM [F2, F3](X, {CONM 512

R,j }32≤j<64), (2.25)

where F2 and F3 are F-functions defined in Sec. 2.2.5, and {CONM 512
R,j }32≤j<64 is the set of

constants defined in Sec. 2.7.

• Also, for any X ∈ {0, 1}256, MS 512
X is defined as

MSF 512
X (X) = MSM [F0, F3](X, {CONM 512

X ,j }32≤j<64), (2.26)

where F0 and F3 are F-functions defined in Sec. 2.2.5, and {CONM 512
X ,j }32≤j<64 is the set of

constants defined in Sec. 2.7.

• DR512 is the data rotating function defined in Sec. 2.2.7.

• CPF 512
L is an instance of CPM 512 described in Sec. 2.2.3, and for any X ∈ {0, 1}256 and

Y ∈ ({0, 1}32)216, it is defined as

CPF 512
L (X,Y ) = CPM 512 [F1, F0](X,Y, {CONC 512

L,j }104≤j<208), (2.27)

where F0 and F1 are F-functions defined in Sec. 2.2.5, and {CONC 512
L,j }104≤j<208 is the set

of constants defined in Sec. 2.7.

• CPF 512
R is an instance of CPM 512 described in Sec. 2.2.3, and for any X ∈ {0, 1}256 and

Y ∈ ({0, 1}32)216, it is defined as

CPF 512
R (X,Y ) = CPM 512 [F3, F2](X,Y, {CONC 512

R,j }104≤j<208), (2.28)

where F2 and F3 are F-functions defined in Sec. 2.2.5, and {CONC 512
R,j }104≤j<208 is the set

of constants defined in Sec. 2.7.
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Specification of FF 512

Now we present the specification of FF 512 .

Step 1. Let (ML (256),MR (256))←Mm−1 (512), and let (XL(256), XR(256))← Hm−1 (512).

Step 2. Let {TL,j (32)}0≤j<72 ← MSF 512
L (ML (256)).

Step 3. Let {TR,j (32)}0≤j<72 ← MSF 512
R (MR (256)).

Step 4. Let {TX,j (32)}0≤j<72 ← MSF 512
X (XL (256)).

Step 5. Let {Uj (32)}0≤j<216 ← DR512 ({TL,j (32)}0≤j<72, {TR,j (32)}0≤j<72, {TX,j (32)}0≤j<72).

Step 6. Let YL(256) ← CPF 512
L (XR(256), {Uj (32)}0≤j<216).

Step 7. Let YR(256) ← CPF 512
R (XR(256), {Uj (32)}0≤j<216).

Step 8. Finally, the output is Hm (512) ← (YL(256) ⊕XR(256)||YR(256) ⊕XR(256)).

See Fig. 2.24 for a pseudocode.
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2.6 Specification of AURORA-384 version 2

AURORA-384 version 2 takes the input message of length at most 512× (264−1) = 273−512 bits,
and outputs the hash value of 384 bits. It uses the same padding function Pad , the compression
functions CF 512 , the finalization function FF 512 as AURORA-512 version 2 defined in Sec. 2.5.

The difference is that AURORA-384 version 2 uses H0 = 1512 as the initial value, and the
output of FF 512 is truncated to 384 bits by the truncation function TF 384.

The truncation function, TF 384(·) : {0, 1}512 → {0, 1}384, first parses the input Hm (512) into a
sequence of bytes Hm (512) = (m0 (8),m1 (8), . . . ,m63 (8)) and drops the following bytes;

m6,m7,m14,m15,m22,m23,m30,m31,m38,m39,m46,m47,m54,m55,m62,m63,

to produce the 384-bit hash value H ′m (384) = (m′0 (8),m
′
1 (8), . . . ,m

′
47 (8)).

That is, for the 512-bit input Hm (512) = (m0 (8),m1 (8), . . . ,m63 (8)), the 384-bit output is
H ′m (384) = (m′0 (8),m

′
1 (8), . . . ,m

′
47 (8)), where





m′i = mi for 0 ≤ i ≤ 5
m′i = mi+2 for 6 ≤ i ≤ 11
m′i = mi+4 for 12 ≤ i ≤ 17
m′i = mi+6 for 18 ≤ i ≤ 23
m′i = mi+8 for 24 ≤ i ≤ 29
m′i = mi+10 for 30 ≤ i ≤ 35
m′i = mi+12 for 36 ≤ i ≤ 41
m′i = mi+14 for 42 ≤ i ≤ 47

Now we describe the specification of AURORA-384 version 2.

Step 1. The input message M is first padded with Pad(·) in (2.11), and the result of Pad(M) is
divided into blocks M0,M1, . . . ,Mm−1 each of length 512 bits, i.e., let

(M0 (512),M1 (512), . . . ,Mm−1 (512))← Pad(M).

Step 2. Let H0 (512) = 1512, and compute H1 (512),H2 (512), . . . , Hm (512) by iterating

Hi+1 ← CF 512 (Hi,Mi)

for i = 0 to m−2. Note that when Pad(M) has one block (i.e., when m = 1 and Pad(M) =
M0), then Step 2 is not executed.

Step 3. Let Hm ← FF 512 (Hm−1,Mm−1), and the output is H ′m (384) ← TF 384(Hm (512)).

See Fig. 2.25 for a pseudocode.
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2.7 Constant Values

This section describes the generation procedures and the lists of constant values.

2.7.1 Constant Values for AURORA-224/256

Following constants are used in AURORA-224/256;

• {CONML,j}0≤j<32, {CONMR,j}0≤j<32, {CONC j}0≤j<68 for CF , and

• {CONML,j}32≤j<64, {CONMR,j}32≤j<64, {CONC j}68≤j<136 for FF .

Below, we describe the generation process of the constants. The multiplication and the inver-
sion are done in GF(216) with the primitive polynomial x16 +x15 +x13 +x11 +x5 +x4 + 1, which
is 0x1a831.

Step 1. Let IV0, IV1, mask0, mask1, mask2 and mask3 be the following values.





IV0 ← (21/2 − 1)216 = 0x6a09
IV1 ← (31/2 − 1)216 = 0xbb67
mask0 ← (21/3 − 1)216 = 0x428a
mask1 ← (31/3 − 1)216 = 0x7137
mask2 ← (21/5 − 1)216 = 0x2611
mask3 ← (31/5 − 1)216 = 0x3ee8

Step 2. The following operations are iterated for i = 0 to 16.





T0,i ← IV0 · 0x0002i
T1,i ← IV1 · 0x0002−i
CONC 4i ← (T0,i ⊕mask0 ‖T0,i≪16 8)
CONC 4i+1 ← (T1,i ⊕mask1 ‖T1,i≪16 8)
CONC 4i+2 ← (T0,i≪16 8 ‖T0,i ⊕mask2)
CONC 4i+3 ← (T1,i≪16 9 ‖T1,i ⊕mask3)

Step 3. The following operations are iterated for i = 0 to 7.





CONML,4i ← CONC 8i≪32 1
CONML,4i+1 ← CONC 8i+1 ≪32 1
CONML,4i+2 ← CONC 8i+2 ≪32 1
CONML,4i+3 ← CONC 8i+3 ≪32 1
CONMR,4i ← CONC 8i+4 ≫32 1
CONMR,4i+1 ← CONC 8i+5 ≫32 1
CONMR,4i+2 ← CONC 8i+6 ≫32 1
CONMR,4i+3 ← CONC 8i+7 ≫32 1

Step 4. The following operations are iterated for i = 0 to 16.





CONC 4i+68 ← CONC 4i

CONC 4i+69 ← CONC 4i+1

CONC 4i+70 ← CONC 4i+2

CONC 4i+71 ← CONC 4i+3 ⊕ 0x01010101
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Step 5. The following operations are iterated for i = 0 to 7.



CONML,4i+32 ← CONML,4i

CONML,4i+33 ← CONML,4i+1

CONML,4i+34 ← CONML,4i+2

CONML,4i+35 ← CONML,4i+3

CONMR,4i+32 ← CONMR,4i

CONMR,4i+33 ← CONMR,4i+1

CONMR,4i+34 ← CONMR,4i+2

CONMR,4i+35 ← CONMR,4i+3

2.7.2 Constant Values for AURORA-384/512 version 2

Following constants are used in AURORA-384/512 version 2;

• {CONM 512
L,j }0≤j<32, {CONM 512

R,j }0≤j<32, {CONM 512
X ,j }0≤j<32, {CONC 512

L,j }0≤j<104,
{CONC 512

R,j }0≤j<104 for CF 512 , and

• {CONM 512
L,j }32≤j<64, {CONM 512

R,j }32≤j<64, {CONM 512
X ,j }32≤j<64, {CONC 512

L,j }104≤j<208,
{CONC 512

R,j }104≤j<208 for FF 512 .

These constants are generated with the procedure described below.

Step 1. Let IV 512
0 , IV 512

1 , mask512
0 , mask512

1 , mask512
2 and mask512

3 be the following values.




IV 512
0 ← (111/2 − 3)216 = 0x510e

IV 512
1 ← (131/2 − 3)216 = 0x9b05

mask512
0 ← (111/3 − 2)216 = 0x3956

mask512
1 ← (131/3 − 2)216 = 0x59f1

mask512
2 ← (111/5 − 1)216 = 0x9d8a

mask512
3 ← (131/5 − 1)216 = 0xab97

Step 2. The following operations are iterated for i = 0 to 25.




T 512
0,i ← IV 512

0 · 0x0002i
T 512

1,i ← IV 512
1 · 0x0002−i

CONC 512
L,4i ← (T 512

0,i ⊕mask512
0 ‖T 512

0,i ≪16 8)
CONC 512

L,4i+1 ← (T 512
1,i ⊕mask512

1 ‖T 512
1,i ≪16 8)

CONC 512
L,4i+2 ← (T 512

0,i ≪16 8 ‖T 512
0,i ⊕mask512

2 )
CONC 512

L,4i+3 ← (T 512
1,i ≪16 9 ‖T 512

1,i ⊕mask512
3 )

Step 3. The following operation is iterated for i = 0 to 103.

CONC 512
R,i ← CONC 512

L,i ≪32 3

Step 4. The following operations are iterated for i = 0 to 7.




CONM 512
L,4i ← CONC 512

L,12i≪32 1
CONM 512

L,4i+1 ← CONC 512
L,12i+1 ≪32 1

CONM 512
L,4i+2 ← CONC 512

L,12i+2 ≪32 1
CONM 512

L,4i+3 ← CONC 512
L,12i+3 ≪32 1

CONM 512
R,4i ← CONC 512

L,12i+4 ≫32 1
CONM 512

R,4i+1 ← CONC 512
L,12i+5 ≫32 1

CONM 512
R,4i+2 ← CONC 512

L,12i+6 ≫32 1
CONM 512

R,4i+3 ← CONC 512
L,12i+7 ≫32 1

CONM 512
X,4i ← CONC 512

L,12i+8 ≪32 2
CONM 512

X,4i+1 ← CONC 512
L,12i+9 ≪32 2

CONM 512
X,4i+2 ← CONC 512

L,12i+10 ≪32 2
CONM 512

X,4i+3 ← CONC 512
L,12i+11 ≪32 2
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Step 5. The following operations are iterated for i = 0 to 25.





CONC 512
L,4i+104 ← CONC 512

L,4i

CONC 512
L,4i+105 ← CONC 512

L,4i+1

CONC 512
L,4i+106 ← CONC 512

L,4i+2

CONC 512
L,4i+107 ← CONC 512

L,4i+3 ⊕ 0x01010101
CONC 512

R,4i+104 ← CONC 512
R,4i

CONC 512
R,4i+105 ← CONC 512

R,4i+1

CONC 512
R,4i+106 ← CONC 512

R,4i+2

CONC 512
R,4i+107 ← CONC 512

R,4i+3 ⊕ 0x01010101

Step 6. The following operations are iterated for i = 0 to 7.





CONM 512
L,4i+32 ← CONM 512

L,4i

CONM 512
L,4i+33 ← CONM 512

L,4i+1

CONM 512
L,4i+34 ← CONM 512

L,4i+2

CONM 512
L,4i+35 ← CONM 512

L,4i+3

CONM 512
R,4i+32 ← CONM 512

R,4i

CONM 512
R,4i+33 ← CONM 512

R,4i+1

CONM 512
R,4i+34 ← CONM 512

R,4i+2

CONM 512
R,4i+35 ← CONM 512

R,4i+3

CONM 512
X,4i+32 ← CONM 512

X,4i

CONM 512
X,4i+33 ← CONM 512

X,4i+1

CONM 512
X,4i+34 ← CONM 512

X,4i+2

CONM 512
X,4i+35 ← CONM 512

X,4i+3

2.7.3 List of Constant Values

The following tables offer the list of the constant values for reference. These described values
are all required constant values for CF of AURORA-224/256, and CF 512 of AURORA-384/512
version 2. In the following tables, the constant values are arranged from the left to the right.

Constant Values for AURORA-224/256 CF {CONCj}0≤j<68

2883f695 ca509844 096a4c18 cf76858f 9698ed2b f89c5476 12d4f203 5713b743

429feaff e1fa326f 15002604 9b21ae25 42a0d5ff ed498163 2a00263b fd38a296

42deabff 3f08c0b1 54002645 7e9c70d7 422257ff 8230f80c a80026b9 0fe6cdef

43daaffe dcac6452 50012741 375b9373 402a5ffd f3e22a7d a00224b1 ab05bc3d

47cabffa e4458d6a 40052351 e52aab9a 480a7ff5 3b8e46b5 800a2c91 72957451

578affea 8073bb0e 00153311 89e2cfac 688affd5 09955d87 002a0c11 44f1464a

168affab 4d66aec3 00547211 a27802b9 ea8aff57 bb07cf35 00a88e11 6194f4d8

babbce07 142fe79a 31f8de20 30ca5bf0 1ad9aca7 43bb73cd 53587e42 18650c64

f22c594f 6871b9e6 a6b096b7 8c3227ae

Constant Values for AURORA-224/256 CF {CONML,j}0≤j<32

5107ed2a 94a13089 12d49830 9eed0b1f 853fd5fe c3f464df 2a004c08 36435c4b

85bd57fe 7e118162 a8004c8a fd38e1ae 87b55ffc b958c8a5 a0024e82 6eb726e6

8f957ff4 c88b1ad5 800a46a2 ca555735 af15ffd4 00e7761d 002a6622 13c59f59

2d15ff56 9acd5d86 00a8e422 44f00573 75779c0f 285fcf34 63f1bc40 6194b7e0

Constant Values for AURORA-224/256 CF {CONMR,j}0≤j<32

cb4c7695 7c4e2a3b 896a7901 ab89dba1 a1506aff f6a4c0b1 9500131d 7e9c514b

a1112bff 41187c06 d400135c 87f366f7 a0152ffe f9f1153e d0011258 d582de1e

a4053ffa 9dc7235a c0051648 b94aba28 b4457fea 84caaec3 80150608 2278a325

f5457fab dd83e79a 80544708 30ca7a6c 8d6cd653 a1ddb9e6 29ac3f21 0c328632
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Constant Values for AURORA-384/512 version 2, CF 512 : {CONC512
L,j }0≤j<104

6858f1ae c2f4fa64 0e51cc84 0b363092 9b4ae35d c06b6566 1ca23f96 3533320d

d55ff613 153c32b3 09ec7183 9a99e75a 4975dc8f ab8f810d 2370eda9 fde459e9

d910b91f 20cec086 46e07dcc 7ef2d2a8 51eb4297 b1767817 bd68f537 0fd14310

e82c852e f9aaa45f 7ad14cf0 b7400bcc 33933af5 ddc4ca7b c50a974f 6b082fa2

2cdc75ea cff3fd69 8a158800 052c3d95 1242ebd4 12f0feb4 142bb69e 0296e096

6f7ed7a9 a869670e 2856cba2 31e35a0f 9506af53 213d3387 50ac31da 98f1d35b

c9c76e0f 659799c3 91f06d1b cc7897f1 7045ecb6 47c2cce1 1349d499 663cb5a4

ab70d96d 82f0fe24 26920fac 03b67096 b52b8273 e0696746 7d8c11f7 3173120f

899d344f 053d33a3 cbb02d41 98b9f75b f0f15836 779799d1 a7c9542d cc5c85f1

022980c4 4ec2cce8 7f3ba6f5 662ebca4 4fa80189 86707e20 fe76eb74 03bf7416

d4aa0312 e2292744 fced7076 b177104f 4a9f368c 041d13a2 c973ee43 d8bbf67b

dec46d18 770709d1 92e77a18 ec5d8561 5e43ea98 4e8a84e8 1567fa9f f62ebcec

f77cd531 86545a20 2ace53a0 4bbf7432 0d339acb e23b3544 6534a9ef 9577105d

Constant Values for AURORA-384/512 version 2, CF 512 : {CONC512
R,j}0≤j<104

42c78d73 17a7d326 728e6420 59b18490 da571aec 035b2b36 e511fcb0 a9999069

aaffb09e a9e19598 4f638c18 d4cf3ad4 4baee47a 5c7c086d 1b876d49 ef22cf4f

c885c8fe 06760431 3703ee62 f7969543 8f5a14ba 8bb3c0bd eb47a9bd 7e8a1880

41642977 cd5522ff d68a6783 ba005e65 9c99d7a9 ee2653de 2854ba7e 58417d13

66e3af51 7f9feb4e 50ac4004 2961eca8 92175ea0 9787f5a0 a15db4f0 14b704b0

7bf6bd4b 434b3875 42b65d11 8f1ad079 a8357a9c 09e99c39 85618ed2 c78e9adc

4e3b707e 2cbcce1b 8f8368dc 63c4bf8e 822f65b3 3e16670a 9a4ea4c8 31e5ad23

5b86cb6d 1787f124 34907d61 1db384b0 a95c139d 034b3a37 ec608fbb 8b989079

4ce9a27c 29e99d18 5d816a0e c5cfbadc 878ac1b7 bcbcce8b 3e4aa16d 62e42f8e

114c0620 76166742 f9dd37ab 3175e523 7d400c4a 3383f104 f3b75ba7 1dfba0b0

a5501896 11493a27 e76b83b7 8bb8827d 54f9b462 20e89d10 4b9f721e c5dfb3de

f62368c6 b8384e8b 973bd0c4 62ec2b0f f21f54c2 74542742 ab3fd4f8 b175e767

bbe6a98f 32a2d104 56729d01 5dfba192 699cd658 11d9aa27 29a54f7b abb882ec

Constant Values for AURORA-384/512 version 2, CF 512 : {CONM512
L,j }0≤j<32

d0b1e35c 85e9f4c9 1ca39908 166c6124 92ebb91e 571f021b 46e1db52 fbc8b3d3

d0590a5d f35548bf f5a299e0 6e801799 2485d7a8 25e1fd68 28576d3c 052dc12c

938edc1f cb2f3386 23e0da37 98f12fe3 6a5704e7 c0d2ce8d fb1823ee 62e6241e

04530188 9d8599d0 fe774dea cc5d7948 953e6d18 083a2744 92e7dc87 b177ecf7

Constant Values for AURORA-384/512 version 2, CF 512 : {CONM512
R,j }0≤j<32

cda571ae 6035b2b3 0e511fcb 9a999906 ec885c8f 10676043 23703ee6 3f796954

99c99d7a eee2653d e2854ba7 358417d1 b7bf6bd4 5434b387 142b65d1 98f1ad07

3822f65b a3e16670 89a4ea4c 331e5ad2 c4ce9a27 829e99d1 e5d816a0 cc5cfbad

a7d400c4 43383f10 7f3b75ba 01dfba0b 6f62368c bb8384e8 4973bd0c f62ec2b0

Constant Values for AURORA-384/512 version 2, CF 512 : {CONM512
X,j}0≤j<32

557fd84f 54f0cacc 27b1c60c 6a679d6a 47ad0a5d c5d9e05e f5a3d4de 3f450c40

b371d7a8 3fcff5a7 28562002 14b0f654 541abd4e 84f4ce1c 42b0c769 63c74d6e

adc365b6 0bc3f892 9a483eb0 0ed9c258 c3c560db de5e6745 9f2550b6 317217c7

52a80c4b 88a49d13 f3b5c1db c5dc413e 790faa61 3a2a13a1 559fea7c d8baf3b3
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2.8 Pseudocodes

The pseudocodes of the specifications of the AURORA* family are described in this section.

MSM [F, F ′](X(256), {Yj (32)}0≤j<32)
000 (X0, X1, . . . , X7)← X
010 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (Y0, Y1, Y2, Y3)
020 (Z0, Z1, . . . , Z7)← (X0, X1, . . . , X7)
030 for i← 1 to 7 do
040 (X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
050 (X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
060 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (Y4i, Y4i+1, Y4i+2, Y4i+3)
070 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
080 (Z8i, Z8i+1, . . . , Z8i+7)← (X0, X1, . . . , X7)
090 (X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
100 (X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
110 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
120 (Z64, Z65, . . . , Z71)← (X0, X1, . . . , X7)
130 return {Zj (32)}0≤j<72

Figure 2.12: A pseudocode of MSM : {0, 1}256 × ({0, 1}32)32 → ({0, 1}32)72. BD is defined in
Sec. 2.2.4. F and F ′ are functions over {0, 1}32.

CPM [F, F ′](X(256), {Yj (32)}0≤j<144, {Wj (32)}0≤j<68)
000 (X0, X1, . . . , X7)← X
010 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (W0,W1,W2,W3)
020 (X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y0, Y1, . . . , Y7)
030 for i← 1 to 16 do
040 (X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
050 (X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
060 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (W4i,W4i+1,W4i+2,W4i+3)
070 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
080 (X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y8i, Y8i+1, . . . , Y8i+7)
090 (X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
100 (X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
110 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
120 (X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y136, Y137, . . . , Y143)
130 Z ← (X0 ‖X1 ‖ · · · ‖X7)
140 return Z(256)

Figure 2.13: A pseudocode of CPM : {0, 1}256 × ({0, 1}32)144 × ({0, 1}32)68 → {0, 1}256. BD is
defined in Sec. 2.2.4. F and F ′ are functions over {0, 1}32.
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CPM 512 [F, F ′](X(256), {Yj (32)}0≤j<216, {Wj (32)}0≤j<104)
000 (X0, X1, . . . , X7)← X
010 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (W0,W1,W2,W3)
020 (X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y0, Y1, . . . , Y7)
030 for i← 1 to 25 do
040 (X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
050 (X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
060 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (W4i,W4i+1,W4i+2,W4i+3)
070 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
080 (X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y8i, Y8i+1, . . . , Y8i+7)
090 (X0, X1, . . . , X7)← BD(X0, X1, . . . , X7)
100 (X0, X2, X4, X6)← (F (X0), F ′(X2), F (X4), F ′(X6))
110 (X1, X3, X5, X7)← (X1, X3, X5, X7)⊕ (X0, X2, X4, X6)
120 (X0, X1, . . . , X7)← (X0, X1, . . . , X7)⊕ (Y208, Y209, . . . , Y215)
130 Z ← (X0 ‖X1 ‖ · · · ‖X7)
140 return Z(256)

Figure 2.14: A pseudocode of CPM 512 : {0, 1}256 × ({0, 1}32)216 × ({0, 1}32)104 → {0, 1}256. BD
is defined in Sec. 2.2.4. F and F ′ are functions over {0, 1}32.

BD(X0 (32), X1 (32), . . . , X7 (32))
000 for i← 0 to 7 do
010 (x4i, x4i+1, x4i+2, x4i+3)← Xi

020 for i← 0 to 31 do
030 x′π(i) ← xi
040 for i← 0 to 7 do
050 Xi ← (x′4i ‖x′4i+1 ‖x′4i+2 ‖x′4i+3)
060 return (X0 (32), X1 (32), . . . , X7 (32))

Figure 2.15: A pseudocode of BD : ({0, 1}32)8 → ({0, 1}32)8. π is defined in Fig. 2.4.

DR({Xj (32)}0≤j<72, {Yj (32)}0≤j<72)
000 for i← 0 to 8 do
010 (Z16i, Z16i+1, . . . , Z16i+7)← PROTL(X8i, X8i+1, . . . , X8i+7)
020 (Z16i+8, Z16i+9, . . . , Z16i+15)← PROTR(Y8i, Y8i+1, . . . , Y8i+7)
030 return {Zj (32)}0≤j<144

Figure 2.16: A pseudocode of DR : ({0, 1}32)72 × ({0, 1}32)72 → ({0, 1}32)144. The functions
PROTL and PROTR are defined in (2.8) and (2.9), respectively.

DR512 ({Xj (32)}0≤j<72, {Yj (32)}0≤j<72, {Wj (32)}0≤j<72)
000 for i← 0 to 8 do
010 (Z24i, Z24i+1, . . . , Z24i+7)← PROTL(X8i, X8i+1, . . . , X8i+7)
020 (Z24i+8, Z24i+9, . . . , Z24i+15)← PROTR(Y8i, Y8i+1, . . . , Y8i+7)
030 (Z24i+16, Z24i+17, . . . , Z24i+23)← PROTX (W8i,W8i+1, . . . ,W8i+7)
040 return {Zj (32)}0≤j<216

Figure 2.17: A pseudocode of DR512 : ({0, 1}32)72 × ({0, 1}32)72 × ({0, 1}32)72 → ({0, 1}32)216.
The functions PROTL, PROTR and PROTX are defined in (2.8), (2.9) and (2.10), respectively.
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AURORA-256(M)
000 (M0,M1, . . . ,Mm−1)← Pad(M)
010 H0 ← 0256

020 for i← 0 to m− 2 do
030 Hi+1 ← CF (Hi,Mi)
040 Hm ← FF (Hm−1,Mm−1)
050 return Hm (256)

Figure 2.18: A pseudocode of AURORA-256. The padding function, Pad(·), is defined in (2.11),
CF is defined in Sec. 2.3.2, and FF is defined in Sec. 2.3.3.

CF (Hi (256),Mi (512))
000 (ML,MR)←Mi

010 X ← Hi

020 {TL,j}0≤j<72 ← MSL(ML)
030 {TR,j}0≤j<72 ← MSR(MR)
040 {Uj}0≤j≤144 ← DR({TL,j}0≤j<72, {TR,j}0≤j<72)
050 Y ← CP(X, {Uj}0≤j<144)
060 Hi+1 ← Y ⊕X
070 return Hi+1 (256)

Figure 2.19: A pseudocode of CF : {0, 1}256 × {0, 1}512 → {0, 1}256. MSL, MSR, DR, and CP
are defined in (2.12), (2.13), Sec. 2.2.6, and in (2.14), respectively.

FF (Hm−1 (256),Mm−1 (256))
000 (ML,MR)←Mm−1

010 X ← Hm−1

020 {TL,j}0≤j<72 ← MSFL(ML)
030 {TR,j}0≤j<72 ← MSFR(MR)
040 {Uj}0≤j≤144 ← DR({TL,j}0≤j<72, {TR,j}0≤j<72)
050 Y ← CPF (X, {Uj}0≤j<144)
060 Hm ← Y ⊕X
070 return Hm (256)

Figure 2.20: A pseudocode of FF : {0, 1}256 × {0, 1}512 → {0, 1}256. MSFL, MSFR, DR, and
CPF are defined in (2.16), (2.17), Sec. 2.2.6, and in (2.18), respectively.

AURORA-224(M)
000 (M0,M1, . . . ,Mm−1)← Pad(M)
010 H0 ← 1256

020 for i← 0 to m− 2 do
030 Hi+1 ← CF (Hi,Mi)
040 Hm ← FF (Hm−1,Mm−1)
050 H ′m ← TF 224(Hm)
060 return H ′m (224)

Figure 2.21: A pseudocode of AURORA-224. Pad , CF , and FF are the same as AURORA-256
and defined in Sec. 2.3.
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AURORA-512v2(M)
000 (M0,M1, . . . ,Mm−1)← Pad(M)
010 H0 ← 0512

020 for i← 0 to m− 2 do
030 Hi+1 ← CF 512 (Hi,Mi)
040 Hm ← FF 512 (Hm−1,Mm−1)
050 return Hm (512)

Figure 2.22: A pseudocode of AURORA-512 version 2. The padding function, Pad(·), is defined
in (2.11), CF 512 is defined in Sec. 2.5.2, FF 512 is defined in Sec. 2.5.3.

CF 512 (Hi (512),Mi (512))
000 (ML,MR)←Mi

010 (XL, XR)← Hi

020 {TL,j}0≤j<72 ← MS 512
L (ML)

030 {TR,j}0≤j<72 ← MS 512
R (MR)

040 {TX,j}0≤j<72 ← MS 512
X (XL)

050 {Uj}0≤j≤216 ← DR512 ({TL,j}0≤j<72, {TR,j}0≤j<72, {TX,j}0≤j<72)
060 YL ← CP512

L (XR, {Uj}0≤j<216)
070 YR ← CP512

R (XR, {Uj}0≤j<216)
080 ZL ← YL ⊕XR

090 ZR ← YR ⊕XR

100 Hi+1 ← (ZL, ZR)
110 return Hi+1 (512)

Figure 2.23: A pseudocode of CF 512 : {0, 1}512 × {0, 1}512 → {0, 1}512. MS 512
L , MS 512

R , MS 512
X ,

DR512 , CP512
L , and CP512

R are defined in (2.19), (2.20), (2.21), Sec. 2.2.7, (2.22), and in (2.23),
respectively.

FF 512 (Hm−1 (512),Mm−1 (512))
000 (ML,MR)←Mm−1

010 (XL, XR)← Hm−1

020 {TL,j}0≤j<72 ← MSF 512
L (ML)

030 {TR,j}0≤j<72 ← MSF 512
R (MR)

040 {TX,j}0≤j<72 ← MSF 512
X (XL)

050 {Uj}0≤j≤216 ← DR512 ({TL,j}0≤j<72, {TR,j}0≤j<72, {TX,j}0≤j<72)
060 YL ← CPF 512

L (XR, {Uj}0≤j<216)
070 YR ← CPF 512

R (XR, {Uj}0≤j<216)
080 ZL ← YL ⊕XR

090 ZR ← YR ⊕XR

100 Hm ← (ZL, ZR)
110 return Hm (512)

Figure 2.24: A pseudocode of FF 512 : {0, 1}512 × {0, 1}512 → {0, 1}512. MSF 512
L , MSF 512

R ,
MSF 512

X , DR512 , CPF 512
L , and CPF 512

R are defined in (2.24), (2.25), (2.26), Sec. 2.2.7, (2.27),
and in (2.28), respectively.
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AURORA-384v2(M)
000 (M0,M1, . . . ,Mm−1)← Pad(M)
010 H0 ← 1512

020 for i← 0 to m− 2 do
030 Hi+1 ← CF 512 (Hi,Mi)
040 Hm ← FF 512 (Hm−1,Mm−1)
050 H ′m ← TF 384(Hm)
060 return H ′m (384)

Figure 2.25: A pseudocode of AURORA-384 version 2. Pad , CF 512 , FF 512 are the same as
AURORA-512 and defined in Sec. 2.5.
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2.9 AURORA* Examples

This section describes example vectors of the AURORA* hash algorithm family. Table 2.2 gives
three examples for the messages M1,M2, and M3 defined below for each hash function.

Let the message M1 be the 24-bit ASCII string “abc”, which is equivalent to the following
binary string:

01100001 01100010 01100011.

Let the message M2 be the 448-bit ASCII string

“abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq”.

Let the message M3 be the binary-coded form of the ASCII string which consists of 1,000,000
repetitions of the character “a”.

Table 2.2: AURORA* Examples.

AURORA-224
Message Hash Value
M1 50fddc1c 77601c2c c01cc258 eccc6a10 37646235 860da74b 6e0280af
M2 05874948 064d42ca e0ffa686 45034160 8d571731 f9581ca8 b8ea1890
M3 7977bc32 b66d7b05 6b215153 1545668d 5f3d1c6c 42a48334 5ab31f70

AURORA-256
Message Hash Value
M1 3e0c31c1 8ef5c404 33844fac 2d4acdf4 9e390962 797821a4 9e3553f3 8189917e
M2 21621069 e64ec45a eccf140a d881c684 44c30081 32a3b2d0 e9a1d961 d2dc034f
M3 ec8cede6 3fd1bd3b c6de6702 b6ed25e8 d80f5efa b5433912 446aaefc db026b5f

AURORA-384 version 2
Message Hash Value
M1 cb8c22c8 15e3e5a3 8a1691ee f1dc1ad9 15dfea22 9f27a170 455aaaec b4a9f55a

3a372d1e 412d8853 b754ea23 c28a9e12
M2 b1849343 f6601342 471176d7 bd671692 d3c39ca0 6f5d7a7c dccd802d 47ad5875

b6528095 d51d6be4 4bfb0b0d a5a90099
M3 b579aa54 199a921d df7a3225 3dc82390 a40eb36d 1b649b8f 79430ef2 75b27f50

595ee272 979eef4d e108d540 b3004556

AURORA-512 version 2
Message Hash Value
M1 51c0c29f d45b4bcf f7f54733 5af4424d 74817faf 1983bf5b e2afafd8 86f830bf

b0a49fc2 9f65447b 5336d68c 5793d649 ad19dade 635a84c9 817681e0 1d36acae
M2 5f2a16e9 99edf233 a9b96f52 1b6e792b bf33ea51 549bc0e7 9f5a62e4 17ceff99

ce7d9592 aae2edf8 1d46ec8e ad8181ec 6cba448e 4170b8cb f0c4ec12 eaceab6f
M3 d00e5327 16a8dbb7 11aec003 36daeebd dccb72b9 278ad094 2f417e42 b2b09b67

80f18bfc 6d0403e0 6f32ca24 fe4b9b89 43281215 a3a6c560 46d828c5 b6fd6068
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Chapter 3

Design Rationale of AURORA*

This chapter describes design rationale of the hash function family AURORA*. The design of
AURORA* is divided in two parts: one is a part of fixed-input-length compression functions and
the other is a domain extension transform which utilizes the compression function as a building
block to implement a variable-input-length hash function. In this chapter, we describe the design
rationale in a top-down approach, from the domain extension to the compression function for
AURORA-256 and AURORA-512 version 2, then explain the components in the common building
blocks.

We describe the design rationale for AURORA-256 and AURORA-512 version 2 as representa-
tives of the AURORA* family. The design rationale of AURORA-256 is applicable to AURORA-
224, because AURORA-224 is the same as AURORA-256 except for the initial value and trunca-
tion of final hash value. Similarly, the design rationale of AURORA-512 version 2 is applicable to
AURORA-384 version 2.

3.1 AURORA-256

3.1.1 Domain Extension

AURORA-256 adopts the strengthened Merkle-Damg̊ard (sMD) transform with a finalization
function which is different from the compression function in the transform. The domain extension
of AURORA-256 is shown in the above of Fig. 3.1.

Most of widely-used hash functions employ the strengthened Merkle-Damg̊ard transform be-
cause it has been proven to be collision-resistance preserving [37, 15]: if the compression function
is collision-resistant (CR), then so is the hash function. However, current usages of hash functions
make it obvious that CR no longer suffices for the security goal for hash functions, because hash
functions are often used to instantiate random oracles as well. Coron et al. [12] introduced a
formal definition of “behaving like a random oracle” for hash functions using the indifferentiabil-
ity framework, which was originally proposed by Maurer et al. [34]. They showed that the sMD
transform is not indifferentiable from a random oracle.

We chose the sMD transform with the finalization function, because it preserves CR and indif-
ferentiability (PRO) of the underlying compression function. The collision resistance preservation
(CR-Pr) is ensured by the MD strengthening [37]: the input message is padded by the padding
function Pad(·) in AURORA*. CR-Pr can be proven similarly to the proof in [37]. The pseudo-
random oracle preservation (PRO-Pr) is due to the finalization function. The finalization function
works to envelope the internal MD iteration as the enveloping mechanism used in NMAC/HMAC
constructions [5] and the EMD transform [6]. PRO-Pr can be easily proven from Lemma 5.1 in
[6], which is core to the proof that EMD is PRO-Pr.

The structure of the finalization function FF is the same as the structure of the compression
function CF except for the constants. By using a different set of constants between them, it
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Figure 3.1: AURORA-256: Domain extension and compression function.

is expected that FF behaves as a different function from CF . On the other hand, FF can be
efficiently implemented by using the same module as CF .

3.1.2 Compression Function

The AURORA-256 compression function CF uses two message scheduling functions MSL and
MSR, and the chaining value processing function CP , as shown in the below of Fig. 3.1. It is
regarded as the Davies-Meyer construction [36, p.340]. We chose this construction because it is
possible to input a longer message than a chaining value to achieve higher throughput, while in the
Matyas-Meyer-Oseas and Miyaguchi-Preneel constructions [36, p.340] a message and a chaining
value must be the same size. Although the Davies-Meyer construction has a negative property
such that fixed points are easily found [38, 46, 17], we attached more importance to achieve higher
throughput.

Considering recent attacks on hash functions exploiting simple message scheduling [59, 60,
61], we chose to design more secure (and more heavy) message schedule like Whirlpool [3] and
DASH [8]. Each components of the message scheduling function (MSL, MSR) is based on a 256-
bit permutation using blockcipher design techniques. To achieve both of security and speed, the
message scheduling function is composed of two 256-bit functions, not one 512-bit function, because
generally constructing a 512-bit ideal primitive requires more than double cost of constructing a
256-bit ideal primitive.

The finalization function FF uses two message scheduling functions MSFL and MSFR and
the chaining value processing function CPF . The structure of the finalization function FF is the
same as the structure of the compression function CF except for the constants.

3.2 AURORA-512 version 2

3.2.1 Domain Extension

AURORA-512 version 2 adopts the strengthened Merkle-Damg̊ard (sMD) transform with a final-
ization function, which is the same domain extension transform as AURORA-256 (See Fig. 3.2).
The sMD transform is widely deployed and its security have been studied extensively. The sMD
transform with the finalization function preserves collision-resistance (CR) and indifferentiability
(PRO) of the underlying compression function [28].
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Figure 3.2: AURORA-384/512 version 2: Domain extension and compression function.

Similarly to AURORA-256, the structure of the finalization function FF 512 is the same as the
structure of the compression function CF 512 except for the constants.

3.2.2 Compression Function – Hirose’s DBL construction

The AURORA-512 version 2 compression function CF 512 is based on one of Hirose’s DBL construc-
tions [26]. Let e be a blockcipher with the block size n and the key size k, e : {0, 1}k × {0, 1}n →
{0, 1}n. Then e(key, ·) is a permutation for every key ∈ {0, 1}k. It is shown that the construction
shown in Fig. 3.3 composes collision-resistant hash functions when eU and eL are independent
ideal blockciphers in the ideal cipher model [26, 27].

As shown in Fig. 3.2, a half of the chaining value XR is input to two chaining value processing
functions CP512

L and CP512
R , which are different 256-bit permutations. The other half of the

chaining value XL is input to the message scheduling function MS512
X . The 512-bit message

block Mi is divided into ML and MR, and they are input to the message scheduling functions
MS512

L and MS 512
R , respectively. AURORA-512 version 2 compression function is constructed of

e0(Mi||XL, XR) and e1(Mi||XL, XR), where e0 and e1 are 256-bit blockciphers with 768-bit keys.
Three message scheduling functions MS512

L , MS512
R , MS512

X serve as common key scheduling of e0

and e1.

3.3 Components and Constants

The compression functions of the AURORA* family are composed of the common building blocks:
the message scheduling module (MSM ) and the chaining value processing modules (CPM and
CPM 512 ). This section shows the design rationale of the components and constants used in these
modules.
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Figure 3.3: A compression function based on one of Hirose’s DBL constructions

3.3.1 AURORA Structure

We chose a 256-bit permutation based on byte-oriented operations to construct the structure for
both of the message scheduling module (MSM ) and the chaining value processing modules (CPM
and CPM 512 ). We call it the AURORA structure, which is shown in Fig. 3.4. It can be regarded
as a combination of SPN and a generalized Feistel structure.

The AURORA structure itself is novel, but it follows the traditional blockcipher design strategy.
There are four 32-bit-to-32-bit F-functions in parallel in one round. The F-function consists of a
substitution layer and a permutation layer, where four S-boxes and a 4× 4 matrix multiplication
in GF(28) are operated. Details of the F-function are written in Sec. 3.3.2.

In order that the hash function family AURORA* has desirable security properties including
the collision resistance and indifferentiability, it should be guaranteed that the underlying compres-
sion function has no differential paths with high probability that are exploitable in collision-finding
attacks or distinguishing attacks. The compression function of AURORA-256 consists of an un-
derlying 256-bit blockcipher with two message scheduling modules that treat 512-bit messages.
Since it is computationally infeasible to estimate maximum differential probability of the overall
compression function CF : {0, 1}256 × {0, 1}512 → {0, 1}256, we designed each of the 256-bit per-
mutations in MSM and CPM , i.e. (X0, X1, · · · , X7)→ (Z64, Z65, · · · , Z71) shown in Fig. 2.1 and
(X0, X1, · · · , X7)→ (Z0, Z1, · · · , Z7) shown in Fig. 2.2, so that they have no differential paths with
high probability under the assumption that “subkeys” are independent and uniformly distributed.

In choosing the structure among several candidates including the generalized Feistel structure
and its variants, we estimated maximum differential characteristic probability obtained by num-
bers of active S-boxes, and compared estimated performance given by the number of required
F-functions. As a result of consideration discussed in Sec. 4.2.2, we chose 8-round AURORA
structure for the message scheduling module (MSM ) and 17-round AURORA structure for the
chaining value processing module (CPM ). Similarly, as for AURORA-512 version 2, as a re-
sult of consideration discussed in Sec. 4.2.2, we chose the same 8-round AURORA structure for
the message scheduling module (MSM ) and 26-round AURORA structure for the chaining value
processing module (CPM 512 ).

Since (1) AURORA*’s message scheduling module is designed to be secure by itself by using
blockcipher design techniques, and (2) AURORA* is based on byte-oriented operations including
the S-box and the matrices in GF(28) while SHA-2 makes use of logical operations on 32-bit or 64-
bit words, the design strategy is significantly different from SHA-2. Therefore, it is expected that
a possibly successful attack on SHA-2 is unlikely to be applicable to AURORA*. Furthermore,
byte-oriented operations including the S-box and the matrices in GF(28) are suitable for a wide
range of platforms including 8-bit processors and constrained hardware implementations.
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Figure 3.4: AURORA structure.

Byte Diffusion function BD. The byte diffusion function BD is adopted to enhance diffusion
and to destroy wordwise structure. For example, there exist 16-round trivial impossible differential
paths in the AURORA structure if BD is replaced with the traditional wordwise permutation (c.f.
There exist 17-round trivial impossible differential paths in the 8-line generalized Feistel structure).
On the other hand, full bytewise diffusion has drawbacks including a decrease in efficiency and
a reduction of effect by the DSM techniques (for details, see the design rationale of diffusion
matrices described later in this section). We examined the effect of several variants of diffusion
on differential characteristic probability to determine the byte diffusion. As a result, we chose the
diffusion function where half of the data (i.e. the 2nd, 4th, 6th and 8th words) are input to the
bytewise diffusion which is similar to the ShiftRow transformation in the AES [23], and the other
half (i.e. the 1st, 3rd, 5th, and 7th words) are input to the 32-bit wordwise permutation similar
to that in the generalized Feistel structure.

3.3.2 F-function

The F-function consists of a substitution layer and a permutation layer, where four non-linear byte
substitutions (S-boxes) and a 4×4 maximum distance separable (MDS) matrix multiplication over
GF(28) are operated. The structure and the components of the F-function are chosen to facilitate
analysis and to utilize the established techniques for blockcipher design and analysis.

AURORA* uses four F-Functions F0, F1, F2, and F3 with different diffusion matrices. Each
of the building blocks MSL, MSR MS 512

L , MS 512
R , MS 512

X , CP , CP512
L , and CP512

R , uses two
different F-Functions chosen out of four (see Table 3.2). We chose four diffusion matrices so that
the Diffusion Switching Mechanism (DSM) [56] works to improve the security against differential
and linear attacks.

The details of selection of the S-box and the diffusion matrices are described below.
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S-box

We explain design criteria and procedure for choosing the S-box of AURORA* to show that there
exist no “trap-doors” in it. The design criteria of the S-box are:

• Immunity against known attacks, and

• Suitability for efficient hardware/software implementations.

To meet the design criteria above, we chose a byte substitution based on an inversion in the finite
field GF(28), because it provides optimal security in terms of maximum differential/linear prob-
ability etc. and optimization techniques for hardware/software implementations are well studied.
The AES [23] also employs an S-box based on an inversion in the finite field GF(28), however,
there is room for both of area/throughput optimizations in hardware implementations. Thus we
decided to choose a different S-box from the AES.

The S-box of AURORA* is based on the inversion in the finite field GF((24)2) defined by
an irreducible polynomial z2 + z + {1001} for which the underlying GF(24) is defined by an
irreducible polynomial z′4+z′+1. These irreducible polynomials were chosen to optimize hardware
implementations. The S-box is constructed by the following three steps:

Step 1. Apply the affine transformation over GF(2): f ,

Step 2. Take the inverse in GF((24)2), then

Step 3. Apply the affine transformation over GF(2): g.

The affine transformations f and g are applied to hide the algebraic structure (such as alge-
braically simple relations) in the finite field GF((24)2). Considering implementation cost, the
affine transformations f and g were chosen so that the following conditions are satisfied.

Let f(x) = Mf ·x+cf and g(x) = Mg ·x+cg, where Mf and Mg are non-singular 8×8 matrices
in GF(2), and cf and cg are constant vectors in GF(2) (See (2.2) and (2.3) in Sec. 2.2.5).

Conditions on Mf and Mg

1. The Hamming weight of each row/column vector of Mf and Mg is 2 or less.

2. The Hamming distance between the 1st and the 5th row vectors in Mf and Mg is 1. Similarly,
the Hamming distance between the 2nd and the 6th row vectors, the 3rd and the 7th row
vectors, and the 4th and the 8th row vectors in Mf and Mg is 1, respectively.

3. The Hamming weights of the 5th, 6th, 7th, and 8th row vectors are 1.

The numbers of candidates of Mf and Mg satisfying the conditions above are 40320, respectively.

Conditions on cf and cg

1. The Hamming weight of cf and cg is 4.

2. The Hamming weight of the upper 4-bit of cf and cg is 3, and the Hamming weight of the
lower 4-bit of cf and cg is 1, respectively.

The number of candidates of cf and cg satisfying the conditions above is 17, respectively.

From all the possible 40320 × 40320 × 17 × 17 combinations of (Mf , Mg, cf , cg) satisfying
the conditions above, we chose the first candidate that satisfied the security properties1 shown in
Table 3.1 according to the pseudocode below:

1The condition for the minimum number of terms in polynomial over GF(28) was not included in the selection
conditions in the pseudocode, but the selected candidate satisfied this property.
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Table 3.1: Security properties of the S-box.

maximum differential probability 2−6

maximum linear probability 2−6

minimum degree of Boolean polynomial 7
minimum number of terms in polynomial over GF(28) 252
length of cycle 255

Select S-box (i.e. Mf , Mg, cf , cg)
000 for Mf index ← 0 to 40319 do
010 for Mgindex ← 40319 down to 0 do
020 for cf index ← 0 to 16 do
030 for cgindex ← 0 to 16 do
040 if satisfy the conditions in Table 3.1

return (Mf index, Mgindex, cf index, cgindex).

Note that cf and cg are indexed by the values which can be represented as the concatenation of
its individual bit values of the 8-bit vector in the order, respectively. Mf and Mg are indexed
by the values which are generated by concatenating 8 8-bit row vectors from the most significant
byte, respectively.

As a result, the candidate with Mf index= 0, Mgindex= 40319, cf index= 2, cgindex= 5 was
chosen.

Diffusion Matrices

AURORA* employs four different diffusion matrices M0, M1, M2 and M3 to improve the im-
munity against differential and linear attacks by using the Diffusion Switching Mechanism (DSM).
The concept of DSM was first proposed by Shirai and Shibutani in 2004, followed by extended
works [55, 56, 57, 54] and used in the blockcipher CLEFIA [58]. This technique is applicable to
the AURORA structure. By using plural different matrices satisfying the conditions as follows,
we can prevent difference cancellations which can happen at the XOR operations in the structure.
As a result the guaranteed number of active S-boxes is increased.

Let B8(M) be the branch number of matrix M , which is defined as follows:

Definition 1 Let x ∈ {0, 1}pn represented as x = [x0x1 . . . xp−1] where xi ∈ {0, 1}n, then the
bundle weight wn(x) is defined as wn(x) = ]{xi|xi 6= 0}. Let P : {0, 1}pn → {0, 1}qn. The branch
number of P is defined as

Bn(P ) = min
a 6=0
{wn(a) + wn(P (a))} .

To utilize the DSM technique, AURORA* uses two pairs of diffusion matrices (M0, M1), and
(M2,M3) which satisfy Conditions I and II. Note that the elements of the matrices are in GF(28).

Condition I (MDS)

B8(M0) = B8(M1) = 5 (3.1)
B8(M2) = B8(M3) = 5 (3.2)

Condition II (DSM)

B8(M0|M1) = B8( tM−1
0 | tM−1

1 ) = 5 (3.3)
B8(M2|M3) = B8( tM−1

2 | tM−1
3 ) = 5 (3.4)
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Table 3.2: Diffusion matrices used in each building block of AURORA* family.

AURORA-224/256 Function MSL MSR CP
[SBL] Building block MSM MSM CPM
Davies-Meyer # of rounds 8-round 8-round 17-round
construction F-functions F0,F1 F2,F3 F1,F0

Matrices M0,M1 M2,M3 M1,M0

AURORA-384/512 v2 Function MS512
L MS512

R MS512
X CP512

L CP512
R

[DBL] Building block MSM MSM MSM CPM 512 CPM 512

Hirose’s # of rounds 8-round 8-round 8-round 26-round 26-round
construction F-functions F0,F1 F2,F3 F0,F3 F1,F0 F3,F2

Matrices M0,M1 M2,M3 M0,M3 M1,M0 M3,M2

In Condition I, 5 is an optimal branch number for 4× 4 matrices in GF(28), and the matrices
satisfying this condition are called the MDS matrices. Besides Condition I, the branch numbers of
the concatenated matricesM0|M1, tM−1

0 | tM−1
1 , M2|M3, and tM−1

2 | tM−1
3 should be optimal.

We call the pair of the matrices satisfying Conditions I and II the “DSM pair”. (M0, M1) is a
DSM pair.

Actually, firstly (M0, M1) was chosen according to (3.1) and (3.3). Then M2 and M3 were
obtained by cyclically shifting each column of M0 and M1, respectively. It is easily proven that
(M2,M3) is a DSM pair, i.e. (3.2) and (3.4) hold forM2 andM3 obtained in this way. Moreover,
it is also shown that (M0, M3) and (M1, M2) are DSM pairs:

B8(M0|M3) = B8( tM−1
0 | tM−1

3 ) = 5 (3.5)
B8(M1|M2) = B8( tM−1

1 | tM−1
2 ) = 5 (3.6)

Therefore, the DSM effect is expected to work not only in the single building block but also
across the building blocks such as CP , MSL, and MSR. Table 3.2 shows diffusion matrices used
in each building block of the AURORA* family.

Since there are huge number of matrices satisfying Conditions I and II, we chose (M0, M1)
considering implementation cost. Among circulant matrices with a low Hamming weight, we chose
the pair of matrices which can be implemented efficiently in hardware, i.e., to minimize the XOR
gate counts and the maximum delay. We chose x8 + x4 + x3 + x2 + 1 as the primitive polynomial
in representing for the field GF(28). M2 and M3 are obtained by cyclically shifting each column
of M0 and M1, respectively.

3.3.3 Data Rotating Function

The outputs from the message scheduling functions are XORed to the data in the chaining
value processing function via the data rotating function DR in AURORA-224/256, and DR512 in
AURORA-384/512 version 2, respectively. The functions DR and DR512 are adopted to incorpo-
rate bitwise operations with minimum additional cost and to prevent generic attacks exploiting
byte/word-wise structure of the chaining value processing function and the message scheduling
functions.

3.3.4 Truncation Functions

In AURORA-224, the 224-bit hash value is obtained by truncating the 256-bit final hash value
by the truncation function TF 224. Similarly, in AURORA-384 version 2, the 384-bit hash value
is obtained by truncating the 512-bit final hash value by the truncation function TF 384. These
truncation functions do not just drop right-most bytes like the SHA-2 family, but drop bytes
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Table 3.3: Initial values and parameters in constant generation procedure.

AURORA-256 IV0 = (21/2 − 1)216 mask0 = (21/3 − 1)216 mask2 = (21/5 − 1)216

IV1 = (31/2 − 1)216 mask1 = (31/3 − 1)216 mask3 = (31/5 − 1)216

AURORA-512 v2 IV0 = (111/2 − 3)216 mask0 = (111/3 − 2)216 mask2 = (111/5 − 1)216

IV1 = (131/2 − 3)216 mask1 = (131/3 − 2)216 mask3 = (131/5 − 1)216

equally from every 64-bit block to make effective use of all the outputs from the F -functions in
the last round of the compression function. See also Sec. 4.2.2.

3.3.5 Constant Generation

Role of Constants in the AURORA* family

AURORA-224/256 and AURORA-384/512 version 2 use 3 and 5 sets of constants, respectively,
as listed in Sec. 2.7.3.

The constants play an important role in security. They are used so that each module of MSM ,
CPM , and CPM 512 looks an independent function. Moreover, it is expected that the finalization
function FF (resp. FF 512 ) behaves as an different function from the compression function CF
(resp. CF 512 ) by using a different set of constants.

Design of Constant Generation Procedure

In AURORA*, all the constants can be generated by the constant generation procedure. This
strategy is more advantageous than storing all the independent random constants, especially in
constrained environments where available memory is limited.

The constant generation procedure is designed to generate pseudorandom sequences by using
simple operations such as XOR, bit-rotations, and so on. The design strategy is similar to the
constant generator of the blockcipher CLEFIA [58]. The four 32-bit constant values used in each
module of MSM , CPM and CPM 512 in one round are generated from 16-bit values T0,i and T1,i.
T0,i and T1,i are updated every round by multiplication by x or x−1 in GF(216), respectively,
where the primitive polynomial is x16 + x15 + x13 + x11 + x5 + x4 + 1 (=0x1a831). This primitive
polynomial is also used in CLEFIA, and the choosing strategy is as follows. The lower 16-bit
value is defined as 0xa831= (= 3

√
101 − 4) · 216). “101” is the smallest prime number satisfying

the primitive polynomial condition in this form.

We set IV0 and IV1 (the initial values of T0,i and T1,i) and the masking values mask0, mask1,
mask2, mask3 as the first 16 bits of the fractional parts of the square/cube/fifth roots of prime
numbers 2, 3, 11, and 13 as Table 3.3 shows. This is an evidence that there is no trapdoor in these
values.

We selected the amounts of rotation (r0, r1, r2, r3) = (8, 8, 8, 9) in Step 2 in the generation
procedure of the constants, which is described in Sec. 2.7, by checking whether the generated
sequences pass the statistical test suites: the mono bit test, the poker test, and the runs test [19].
In details, we checked the pseudorandomness of the first 20,000 bits of the following sequences for
all the combinations of the amounts of rotation (r0, r1, r2, r3):
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• Sequences of constants for AURORA-224/256
- a sequence generated based on T0,i: {CONC 4i,CONC 4i+2,CONC 4i+4, . . . }
- a sequence generated based on T1,i: {CONC 4i+1,CONC 4i+3,CONC 4i+5, . . . }
- a sequence of constants used in CP : {CONC 4i,CONC 4i+1,CONC 4i+2, . . . }
- a sequence of constants used in MSL: {CONML,4i,CONML,4i+1,CONML,4i+2, . . . }
- a sequence of constants used in MSR: {CONMR,4i,CONMR,4i+1,CONMR,4i+2, . . . }
- a sequence of constants used in CPF : {CONC 4i+68,CONC 4i+69,CONC 4i+70, . . . }
- a sequence of constants used in MSFL: {CONML,4i+32,CONML,4i+33,CONML,4i+34, . . . }
- a sequence of constants used in MSFR: {CONMR,4i+32,CONMR,4i+33,CONMR,4i+34, . . . }
• Sequences of constants for AURORA-384/512 version 2 in a similar manner to above.

From the combinations of (r0, r1, r2, r3) which passed all the statistical tests above, we selected
considering software implementation cost: i.e. we selected (r0, r1, r2, r3) with the smallest sum of
distance from either 0, 8, or 16. As a result, we selected (r0, r1, r2, r3) = (8, 8, 8, 9).

3.3.6 Initial Value

We consider that the security provided by the structure of the AURORA* does not depend on
the value of the initial value, so any value can be used as the initial value. We chose the constants
such as all-0 or all-1, because we don’t need additional area to memorize the specific constants.

Both of AURORA-256 and AURORA-512 version 2 use the same all-0 constants as the initial
value. We don’t identify any security problem, because each module used in AURORA-256 and
AURORA-512 version 2 are different due to different matrices and constants. Similarly, both of
AURORA-224 and AURORA-384 version 2 use the same all-1 constants as the initial value, but
we don’t identify any security problem.
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Chapter 4

Security of AURORA*

4.1 Expected Strength

Each hash function of the AURORA* family of hash size n bits is expected to satisfy preimage
resistance of approximately n bits, second preimage resistance of approximately n − k bits for
any message shorter than 2k bits, and the collision resistance of approximately n/2 bits. Several
attempts to attack the AURORA* family by the above attack scenarios are described in Sec. 4.3.1–
4.3.3.

Moreover, all members in the AURORA* family provide resistance to length-extension attacks
(see Sec. 4.3.4).

Also, any m-bit hash function specified by taking a fixed subset of the function’s output bits
is expected to meet the above requirements with m replacing n.

If a member of the AURORA* family with hash size n bits is used with HMAC to construct
a PRF [24], the PRF resists any distinguishing attack that requires much fewer than 2n/2 queries
and significantly less computation than a preimage attack (see Sec. 4.2.1).

If a member of the AURORA* family with hash size n bits is used in an n-bit randomized
hashing scheme [40], it provides approximately n− k bits of security against the following attack.
(1) An attacker chooses a message M1 of length at most 2k bits, then gets a randomized hash of
M1 with a randomization value r1 that has been randomly chosen without the attacker’s control.
(2) Find a second message M2 and a randomization value r2 that yield the same randomized hash
value.

4.2 Security Argument

4.2.1 Security of HMAC using AURORA*

HMAC-AURORA-224/256 specified in Sec. 6.2 employs CF and FF as their compression functions
and its domain extension is the same as the MD transform. Fig. 4.1 shows the structure of HMAC-
AURORA-224/256. According to the discussion in Sec. 4.2.2, CF and FF are expected to be
pseudorandom functions (PRFs) when keyed via the IV. They are also expected to be PRFs when
keyed via its data input. HMAC using the MD transform was proved to be a PRF when keyed
via the IV assuming that the underlying compression function is a PRF when keyed via the IV
and when keyed via its data input [4]. Therefore HMAC-AURORA-224/256 is expected to be a
good PRF [4].

In a similar manner, HMAC-AURORA-384/512 version 2 employs CF 512 and FF 512 as their
compression functions and its domain extension is the same as the MD transform. According to
the discussion in Sec. 4.2.2, CF 512 and FF 512 are expected to be PRFs when keyed via the IV
and when keyed via its data input. Therefore HMAC-AURORA-384/512 version 2 is expected to
be a good PRF.
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Figure 4.1: HMAC-AURORA-224/256.

4.2.2 Security Properties of AURORA structure

Guaranteed Active S-boxes in AURORA structure

By the recent evolution of research on attacks on hash functions [59, 60, 61], it becomes very
important to know the immunity against differential type attacks to design a new hash function.
Moreover, in the traditional blockcipher based design strategy of hash functions, the compression
function assumes that the underlying blockcipher behaves like an ideal blockcipher. Thus designers
should design a strong blockcipher which holds enough strength against differential cryptanalysis as
a matter of course. This section investigates a permutation used in AURORA* called “AURORA
structure”, and discusses security aspect with regard to differential cryptanalysis.

As the specification of AURORA* shows, MSM , CPM , and CPM 512 employ 8-round, 17-
round, and 26-round AURORA structure, respectively. The AURORA structure is based on
8-bit S-boxes, 4× 4 matrices in GF(28) and the byte diffusion BD , and all components are byte-
oriented. Thus, it is natural to evaluate the immunity against differential cryptanalysis by counting
the minimum number of active S-boxes of AURORA structure using a blockcipher evaluation
method [54, 55, 57, 58].

We used a computer program to count the guaranteed numbers of active S-boxes in the struc-
ture. The counting method treats a byte data as either 0 or 1 in truncated form, and then tries
to find a truncated differential path which holds the minimum number of active S-boxes for a
target round in an exhaustive way [54]. During the search, the DSM conditions are used to judge
whether given truncated paths are valid or not, and behavior of the byte diffusion function BD is
also taken into consideration.

Table 4.1 shows the obtained guaranteed numbers of active S-boxes for each round of AURORA
structure. From the fact that AURORA* employs an S-box whose maximum differential probabil-
ity is 2−6, we can conclude that 8-round AURORA structure (MSM ) does not hold characteristics
whose differential probability is higher than 2−6×26 = 2−156. Similarly, 17-round AURORA struc-
ture (CPM ) does not hold characteristics with probability higher than 2−6×56 = 2−336. Similarly,
26-round AURORA structure (CPM 512 ) does not hold characteristics with probability higher
than 2−6×86 = 2−516.

We explain the immunity of AURORA* against differential cryptanalysis by using the above
observations. There are several steps in recently developed differential type attacks for hash
functions: 1) finding a local collision and a differential path, 2) finding sufficient conditions applied
to a message M , and 3) choosing a message M such that all sufficient conditions hold. Since
there is no established way to prevent a hash function from the above attack, we choose one
approach to make the Step 1) be difficult for an attacker by introducing non-linearity in the
message scheduling part. Consider the situation such that an attacker controls messages to find
a collision of AURORA*. The attacker will succeed if he finds a collision with complexity of
less than 2128. If the attacker injects a difference into MSM , the probability of the differential
that follows a specific characteristic which is useful for finding collision is low, which is less than
2−156(< 2−128). Therefore, it is expected that the attacker fails to find a collision of AURORA*
with complexity of less than 2128.

Moreover, we see that the compression function of AURORA-256 uses a 256-bit blockcipher,
and the compression function of AURORA-512 version 2 uses two 256-bit blockciphers. The
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Table 4.1: Guaranteed Numbers of Active S-boxes in AURORA structure.

Round ] of Active S-boxes Round ] of Active S-boxes
1 0 14 46
2 1 15 50
3 5 16 52
4 6 17 56
5 9 18 60
6 15 19 62
7 22 20 66
8 26 21 70
9 30 22 72
10 32 23 76
11 36 24 80
12 40 25 82
13 42 26 86

obtained numbers of active S-boxes shown in Table 4.1 imply that the blockciphers are secure
against distinguishing attacks in differential cryptanalytic scenarios, which we believe is a more
important requirement than key recovery attacks on hash functions. The 17-round AURORA
structure used in AURORA-224/256 does not hold characteristics with probability higher than
2−6×56 = 2−336(< 2−256). The 26-round AURORA structure used in AURORA-384/512 version 2
does not hold characteristics with probability higher than 2−6×86 = 2−516(< 2−256). As a result,
we conclude that the underlying blockcipher does not hold unexpected properties which can be
exploited by attackers in differential attack scenarios.

Output Truncation

As stated in Sec. 4.1, any m-bit hash function specified by taking a fixed subset of the AURORA*
hash function’s output bits is expected to meet the desirable security requirements. On the
other hand, if we see the AURORA structure carefully, it is noticed that dropping consecutive
32 bits at once from the output of the structure sometimes waste the calculation effort of an
F-function at the last round. Therefore, we introduced the truncation function TF to avoid such
the loss to maximize the effect of F-functions. The output truncation function TF is applied
for AURORA-256 with different IVs to generate the output values for AURORA-224. Similarly,
TF is applied for AURORA-512 version 2 with different IVs to generate the output values for
AURORA-384 version 2. Due to the internal connection of the AURORA structure, we adopted a
design policy of truncation functions which drop non-successive bytes of output of the compression
function to avoid invalidating the calculation effort of an F-function. Let X(256) be an output of
the AURORA structure, and set (X0(64), X1(64), X2(64), X3(64)) ← X. In this case, a truncation
function should not drop any of Xi(64) at once, because output of an F-function at the last round
in CPM or CPM 512 only affects one of Xi(64), which means that the F-function is invalidated for
the calculation of the output values. Therefore, the truncation functions in the AURORA* family
are designed to drop byte data at discontinuous positions.

Impossible Differentials in AURORA Structure

Impossible differential is a differential path that never exists (i.e. its differential probability is
0). The attack using impossible differentials was originally proposed for recovering a blockcipher
key [7].

In hash function cases, there is no secret key to recover, and in most cases the adversary is
allowed to know the message to be hashed. Therefore, it does not seem that impossible differential
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attacks work on hash functions. However, existence of impossible differential can allow us to
distinguish a hash function from a random function. Indeed, with such a property, one can show
a non-random behavior of the hash function. For example, Sasaki et al. recovered the secret data
(password) included in the input of the hash function using an impossible differential path in MD4,
which is used in a challenge-response password authentication protocol [52].

We searched for impossible differential paths by considering that the matrices satisfy the DSM
conditions (i.e. Conditions I and II described in Sec. 3.3.2). The longest impossible differential
paths that we found in the AURORA structure have 7 rounds. It can be shown that the byte
diffusion plays an important role in avoiding long impossible differential paths, because there exist
trivial 16-round impossible differential paths in the simplified-AURORA structure where byte
diffusion function BD is replaced with a “usual” word-wise permutation.

Furthermore, the AURORA structure has stronger resistance against impossible differential
attacks than the generalized Feistel structure: there exist trivial 17-round impossible differential
paths in the 8-branch generalized Feistel structure, and 8-round impossible differential paths in
the 8-branch generalized Feistel structure employing the byte diffusion BD .

Since the chaining value processing modules (CPM and CPM 512 ) employ the 17-round and
26-round AURORA structure, respectively, and the message scheduling modules (MSM ) employ
the 8-round AURORA structure, it is expected that the compression functions of AURORA-256
and AURORA-512 version 2 have no impossible differentials, which can allow us to distinguish
any of AURORA* hash functions from a random function.

4.3 Algorithm Analysis

This section describes a preliminary analysis of AURORA* hash functions regarding collision
attacks, preimage attacks, second preimage attacks, length-extension attacks, multicollision at-
tacks, and slide attacks. In this section, “r-round AURORA-256” is used to refer to a variant of
AURORA-256 algorithm reduced to r rounds, i.e. the chaining value processing function with r
rounds and the corresponding message scheduling functions. The round function begins from the
byte diffusion function BD and ends by XORing with message words (See Fig. 4.2).

4.3.1 Collision Attacks

There are several known approaches for finding collisions of hash functions in the literature. We
consider possible approaches and show their results or how the design of AURORA* works to
prevent the attacks. Beside the analyses below, Sec. 4.2.2 describes differential cryptanalysis of
the AURORA structure, and shows that there is no differential characteristic in MSM , CPM , and
CPM 512 with high probability.

Approach I : Application of the collision attacks on MDx-SHAx family. A well-known
approach for finding collision of hash functions is to (1) find a local collision by analyzing the
chaining value processing module, (2) stack local collisions together to form a global collision
by analyzing message scheduling module and construct a differential path, and (3) boost success
probability of the attack by message modification techniques. This approach has been successful
in finding collisions on many hash functions including MD4, MD5, SHA-0, SHA-1 [11, 60, 61, 59].

The local collision is defined as a collision for a fixed number of steps of the compression
function under the assumption that the message words from the message scheduling modules can
be chosen independently by the attacker. There exists a 2-round local collision in AURORA*,
which is shown in Table 4.2. In the cases of hash functions with simple message schedule such as
MD4 and MD5, this local collision would be useful, because the assumption that message words
are independent almost holds. However, in the case of AURORA*, this assumption does not hold
due to the complicated message scheduling modules. Therefore, the existence of a 2-round local
collision does not lead to a certain vulnerability.
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Table 4.2: A 2-round local collision for AURORA* family.

chaining value difference message word difference
round ∆X0 ∆X1 ∆X2 ∆X3 ∆X4 ∆X5 ∆X6 ∆X7 ∆U8i ∆U8i+1 ∆U8i+2 ∆U8i+3 ∆U8i+4 ∆U8i+5 ∆U8i+6 ∆U8i+7

i 0 0 0 0 0 0 0 0 δ1 0 δ2 0 δ3 0 δ4 0
i+ 1 0 δ2 0 δ3 0 δ4 0 δ1 0 δ2 0 δ3 0 δ4 0 δ1
i+ 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note: δ1, δ2, δ3, δ4 are independent zero or non-zero arbitrary 32-bit values. At least one of δi’s
should be non-zero. Here the message schedule is ignored.

In Table 4.2, notice that δi can be zero, and that at most only 8 differences are introduced in
message words. It is possible to construct longer local collisions, but more message word differences
should be involved. It tends to be harder to control.

The next step is to form a global collision by analyzing the message schedule. In the case
of AURORA*, it is difficult to control the message words due to the heavy message scheduling
functions. Considering the message scheduling functions, we have found collision for up to 3-round
AURORA-224/256 with complexity less than the birthday bound. The differential characteristic
is shown in Table 4.3. The chaining value difference ∆Xi is the difference in the input chaining
value Xi of each round. For other symbols, see Fig. 4.2.

Let α be an 8-bit non-zero value, β be an 8-bit non-zero value where the least significant bit
is zero, and γ = β≫8 1. Then x0, x1, x2, and x3 are defined as follows:

x0: a 32-bit value whose 4th byte is β and the other three bytes are zero. (i.e. 000β)
x1: a 32-bit value whose 4th byte is γ and the other three bytes are zero. (i.e. 000γ)
x2: a 32-bit value whose 3rd byte is α and the other three bytes are zero. (i.e. 00α0)
x3: a 32-bit value whose 2nd byte is α and the other three bytes are zero. (i.e. 0α00)

If we set the message difference ∆ML = (x3, 0, 0, 0, x1, 0, x2, 0) and ∆MR = (0, 0, 0, x1, 0, x2, 0, x3),
the chaining value difference becomes zero at the input of the 2nd round with probability 1. Note
that some of the message words are cyclically shifted by the data rotating function DR before
inputting to the chaining value processing function, e.g., (U8||U11) = (TR,1||TR,3) ≫64 1. To
avoid that the byte difference expands to other bytes by DR, we restrict the value of the non-zero
byte difference in x0 and x1 to β and γ, respectively. Then in the 2nd round, there are differences
in three bytes which are input from message words TL,11, TL,13, and TL,15. In the 3rd round,
the three byte differences get together to leftmost 32-bit word by the byte diffusion function BD .
Therefore, there are three active S-boxes in the left F1. Similarly, there are three active S-boxes
in the left F2 in the message scheduling function MSR. Under the conditions above, there is a
possibility that the output differences of F1 and F2 cancel. (On the other side, if there are less
than five active S-boxes in F1 and F2 in total, the output differences of F1 and F2 never cancel
due to the DSM condition (See Sec. 3.3.2).) When the cancellation occurs, there is a collision in
the leftmost 32-bit word ∆X0, and there is a collision in ∆X1 at the same time. It is expected
that one can find a cancellation in 32-bit output differences by trying 216 message blocks due
to birthday paradox. Therefore, it is expected that one can find a collision for 3-round (out of
17-round) AURORA-256 with a complexity of 216 3-round AURORA-256 compression function.

Approach II : Application of Peyrin’s collision attack on Grindahl. Another approach
for finding collisions is a method used in the cryptanalysis of Grindahl [45]. Although it is very
hard to find a low-weight and/or small differential path for Grindahl, Peyrin succeeded in building
a truncated differential path starting from an all-difference pair of states. The points for the attack
to work on Grindahl include

1. an independent message word concatenated every round, and
2. the truncation at the end of each iteration.

The independent message word was used as control bytes and the truncation was used to erase
a truncated difference for no cost. Moreover, in the case of Grindahl, the permutation of each
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Figure 4.2: Compression function of AURORA-256 (reduced to 4-round).

60



Table 4.3: A 3-round collision for AURORA-256.

chaining value difference message word difference
round 0 ∆X0 ∆X1 ∆X2 ∆X3 ∆X4 ∆X5 ∆X6 ∆X7 ∆TL,0 ∆TL,1 ∆TL,2 ∆TL,3 ∆TL,4 ∆TL,5 ∆TL,6 ∆TL,7

0 0 0 0 0 0 0 0 x3 0 0 0 x1 0 x2 0
round 1 ∆X0 ∆X1 ∆X2 ∆X3 ∆X4 ∆X5 ∆X6 ∆X7 ∆TR,0 ∆TR,1 ∆TR,2 ∆TR,3 ∆TR,4 ∆TR,5 ∆TR,6 ∆TR,7

x3 0 0 0 x1 0 x2 0 0 0 0 x0 0 x2 0 x3

round 2 ∆X0 ∆X1 ∆X2 ∆X3 ∆X4 ∆X5 ∆X6 ∆X7 ∆TL,8 ∆TL,9 ∆TL,10 ∆TL,11 ∆TL,12 ∆TL,13 ∆TL,14 ∆TL,15

0 0 0 0 0 0 0 0 0 0 0 x1 0 x2 0 x3

round 3 ∆X0 ∆X1 ∆X2 ∆X3 ∆X4 ∆X5 ∆X6 ∆X7 ∆TR,8 ∆TR,9 ∆TR,10 ∆TR,11 ∆TR,12 ∆TR,13 ∆TR,14 ∆TR,15

0 0 0 x1 0 x2 0 x3 y1 y1 0 0 0 0 0 0
round 4 ∆X0 ∆X1 ∆X2 ∆X3 ∆X4 ∆X5 ∆X6 ∆X7 – – – – – – – –

0 0 0 0 0 0 0 0 – – – – – – – –
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permute
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truncate
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truncate

permute
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round

round

round

round

round

Grindahl Model AURORA Model

Figure 4.3: Comparison between Grindahl model and AURORA model.

round was not strong enough.
Regarding 1., in the case of AURORA*, which is similar to the MDx family, the message words

which are input every round are not independent, because they are generated by non-linear round
function in a sequential manner. Therefore, it is hard to use message words as control bytes. The
difference between Grindahl model and AURORA model is shown in Fig. 4.3.

Regarding 2., in AURORA*, a truncated difference can be erased during three operations: the
MDS matrix operation, the XOR operation with a message word or the XOR operation after the
F-function. Using either of the operations takes high cost (i.e. a truncated difference can be erased
with low probability). Therefore, it does not seem that Peyrin’s attack on Grindahl [45] works on
AURORA*.

Remark. The analyses above show that AURORA* has a good resistance to existing collision
attacks because of its secure message scheduling. Considering the fact that there have been no
attacks on Whirlpool [3], which was designed based on a similar philosophy to AURORA*, this
design strategy using secure message scheduling makes a secure hash function. On the other
hand, the MDx family (including SHA-1 and SHA-2) was designed using fast and simple message
scheduling, so it is expected that a possibly successful attack on the MDx family is unlikely to be
applicable to AURORA*.
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4.3.2 Preimage Attacks

Compared with a lot of work on collision resistance, the preimage resistance (i.e., one-wayness)
has not been analyzed much. However, there is a steep rise in the study on preimage resistance
recently [33, 10, 2, 1].

Approach I : Meet-in-the-middle approach. In most of the recent preimage attacks [33,
10, 2, 1], an attacker first finds a pseudo-preimage, i.e. a preimage on the compression function,
then extends it to a preimage attack on the full hash function1. Therefore, we start by analysis
of the compression function.

Leurent [33] showed the first preimage attack of the full MD4 (also the first preimage attack
on a member of the MD4 family), which extensively used its simple step function and message
expansion. Therefore, it is difficult to apply the techniques used in Leurent’s attack [33] directly
to other hash functions. Aoki and Sasaki used the meet-in-the-middle technique in finding pseudo-
preimages [1] and succeeded in preimage attacks on many hash functions such as MD4/5, HAVAL-
3/4/5, SHA-0/1/2, HAS-160, and RIPEMD [51].

The key idea in the meet-in-the-middle approach in [1] is to divide the attack target into
two chunks of steps so that each chunk includes at least one message word that is independent
from the other chunk. This strategy was successful for poor message schedules where there is
low dependency between message words, but this is not the case for AURORA*. For example, it
is possible to divide the compression function into two chunks because the message words from
the right message scheduling function MSR are used in odd rounds only, and the message words
from the left message scheduling function MSL are used in even rounds only. However, since
two chunks are alternated every round, the meet-in-the-middle approach can not applied to the
full-round AURORA*. The meet-in-the-middle approach in [1] works up to 3-round AURORA*.
A preimage of a 3-round reduced version of AURORA-256 can be found with the complexity of
about 2241 3-round AURORA-256 compression function computation. However, it is difficult to
find a preimage of the full-round faster than brute-force attack in this approach.

Approach II : Correcting impossible messages. Another approach for finding the preimage
was proposed by De Cannière and Rechberger at CRYPTO2008 [10]. The idea is to start with an
impossible expanded message that would lead to the required hash value, and then to correct this
message until it becomes valid without destroying the preimage property.

This approach has a potential to control a more complex message scheduling, but in the case of
AURORA*, it is still difficult to correct message words without destroying the preimage property
due to carefully-designed message scheduling functions.

Approach III : SAT-solver approach. De et al. proposed preimage attacks on reduced vari-
ants of MD4 and MD5 using SAT-solvers [16]. We describe the preliminary analytic results of
preimage attack of AURORA* using a SAT-solver. Here, we consider two variants of reduced
version of AURORA* for the attack.

The first attempt is trying to recover a preimage of 256-bit output value of a 3-round reduced
version of CF of AURORA-256, called variant A, which does not contain DR without loss of
generality. As a result, the variant A contains 3-round AURORA structure in CP and 1-round
AURORA structure both in MSL and MSR. The preimage attack for the variant A is non-trivial,
and the preimage attack for it can be converted into a SAT problem that contains 384 variables
and 58,112 clauses including 3 to 11 literals (avg. 9.15 literals). Then, we tried to solve the
10 instances of the SAT problem using the MiniSat2 [44]. Each problem is executed on a Xeon
2.80GHz processor with 2GB memory. However, after two weeks of calculation effort by the solver,
no solutions for these problems are obtained.

The second attempt is to find the shrinking version of 3-round reduced version of CF of
AURORA-256, called variant B, which outputs 128-bit hash values in which 1-round of AURORA

1Meet-in-the-middle-approach is also used for converting pseudo-preimages to a preimage, but in this paragraph
we discuss the meet-in-the-middle approach to find pseudo-preimages (i.e. preimages in the compression function).
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structure is halved to 4 data lines. Thus only two different F-functions are included in a round of
the structure. Moreover DR is omitted, and BD only exchanges two bytes of data. In this case,
the SAT-problem contains 192 variables and 29,056 clauses including 3 to 11 literals (avg. 9.15
literals). As a result, we obtained solutions (preimages) of all 10 trials for the variant B. In the
trials, the average calculation time for these problems is about 10 hours.

Even though these preliminary results show the resistance of only the variations of AURORA*’s
compression function, but it is sufficient to believe that full CF AURORA-256 which contains 8-
round, 17-round, and 8-round structure in each module has enough immunity against algebraic
attacks using the direct application of SAT-solvers to invert to a preimage within an acceptable
duration of time. Also the other compression functions in the AURORA* family and hash functions
constructed by these compression functions are expected to achieve enough strength against this
attack scenario.

4.3.3 Second Preimage Attacks

There are two major directions in second preimage attacks: one is generic long-message second
preimage attacks treating the compression function (or the underlying blockcipher) as a black box,
and the other is second preimage attacks using certain properties inside the compression function.

Compared with collision resistance, second preimage resistance has not been analyzed much,
but we consider possible approaches2 and how the design of AURORA* works to prevent the
attacks.

Approach I : Using collision differentials. A straightforward approach for finding second
preimages is to use the differential characteristics used in collision attacks by applying the corre-
sponding message difference to the given message. If the characteristic is followed, then this will
yield a second preimage. This approach was applied to MD4 by Yu et al. [62], but is has some
limitations: one problem is that the success probability of the attack drops by fixing the message.
Another problem is that it only works for a small subset of the message space.

According to the discussion in Sec. 4.2.2 and Sec. 4.3.1, there are no differential characteristics
that hold with high probability in AURORA*, it is expected that this approach is not effective
for finding second preimages of AURORA*.

Approach II : Using multi-near-collision differentials. Another approach for finding sec-
ond preimages in the literature is to use multi-near-collision differentials. The idea is to compute
the hash value for a special message, and try to correct parts of the hash value by applying ap-
propriate differences. This approach was used in the preimage attack on MD4 by Leurent [33],
in the second preimage attacks on SMASH by Lamberger et al. [32], and the (second) preimage
attacks on GOST by Mendel et al. [35].

This approach works if one can find many highly probable differential characteristics for the
same special message. According to the analysis in Sec. 4.2.2, we have not found such differential
characteristics in the compression function of AURORA*. Furthermore, we have not found any
properties in the domain extension transform in the AURORA* family, which can be useful in
constructing structured messages, e.g. the properties of the SMASH structure used in the second
preimage attacks on SMASH [32].

Furthermore, most of the possible known approaches for preimage attacks can be applicable to
second preimage attacks. Since no approaches discussed in Sec. 4.3.2 are promising, it is difficult
to find second preimage by using those approaches.

Generic long-message second preimage attacks. As Kelsey and Schneier showed in [31],
there exists a generic second preimage attack on an n-bit iterated hash functions with the Merkle-
Damg̊ard construction, regardless of the compression function used. For a message of 2k message
blocks, a second preimage can be found with about k × 2

1
2 +1 + 2n−k+1 work.

2A good summary of possible approaches for finding (second) preimages is written in [10].
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Table 4.4: Second preimage resistance for 2k block messages (k < 64) (bits).

AURORA-224 AURORA-256 AURORA-384 v2 AURORA-512 v2
min{224, 256− k} 256− k 384 512− k

Considering this generic long-message second preimage attack, AURORA-256 and AURORA-
512 version 2 provide second preimage resistance of about (256 − k) bits and (512 − k) bits
for 2k-block messages, respectively. AURORA-224 provides second preimage resistance of about
min{224, (256 − k)} bits, since a brute-force attack is faster for k < 32. AURORA-384 version 2
provides second preimage resistance of 384 bits, because the maximum message block size for the
AURORA* family is 264 − 1 blocks, i.e. k < 64, and 384 < 512− k.

Second preimage resistance of the AURORA* is summarized in Table 4.4.

4.3.4 Length-Extension Attack

Length-extension attack is the attack for hash functions. Given a hash value h(M), the attacker
obtains h(M ‖M ′) without knowing the original message M . AURORA-256 adopts the strength-
ened Merkle-Damg̊ard (sMD) transform with the finalization function (See Figure 3.1). It is known
that it preserves indifferentiability (PRO) of the underlying compression function [6, Lemma 5.1].
In the abstract model, this property ensures that AURORA-256 looks like an ideal random oracle
H : {0, 1}∗ → {0, 1}256, and thus length-extension attack does not work. The same observation
holds for AURORA-224 and AURORA-384/512 version 2.

4.3.5 Multicollision Attack

Multicollision attack [29], introduced by Joux, finds the K collision on the classical iterated hash
function in time O(logK · 2n). We use the classical MD transform in all hash functions in the
AURORA* family and the attack can be mounted on them. Although the use of the finalization
functions, it does not help to increase the security against the attack. Finding K collision for
AURORA-224/256 or AURORA-384/512 version 2 is not much harder than finding ordinary
collisions.

4.3.6 Slide Attacks

Slide attacks have mostly been used for blockcipher cryptanalysis. As shown in [25], the slide
attacks also form a potential threat for a certain class of hash functions, e.g., sponge-function like
structures. A slide property which is detected with significantly high probability can allow up
to distinguish a given hash function from a random oracle. Furthermore, certain constructions
for hash-function-based MACs, e.g., a MAC with prefix key MAC(K,M) = H(K||M), can be
vulnerable to forgery and even to key recovery attacks.

Slide attacks on blockciphers [9] utilize the self-similarity of the cipher, typically caused by
a periodic key schedule. The slide attack on hash functions [25] exploits invertibility and self-
similarity in the sponge-function like structures.

We believe that the slide attacks are not applicable to AURORA* based on the following
considerations: (1) The compression function of AURORA* is not invertible due to the feed-
forward in the Davis-Meyer construction. (2) The structure of AURORA* avoids too much self-
similarity both in the level of domain extension transform and in the compression function. In
the domain extension transform level, AURORA-224/256 consists of CF s and FF , which behaves
differently from CF with different constants. In AURORA-384/512 version 2 consists of CF 512 s
and FF 512 , which behaves differently from CF 512 . In the compression function level, randomly
chosen constants avoid a periodic message schedule.
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4.4 Tunable Security Parameters

There are two tunable security parameters in the hash function family AURORA*. The first
parameter is an iteration number of round functions in AURORA structure used in MSM , CPM
and CPM 512 . The second parameter is a method to modify the AURORA* family to be able to
output digests whose length are other than 224, 256, 384 and 512 bits.

4.4.1 Number of Rounds

Recommended numbers of rounds are 8 for MSM , 17 for CPM , and 26 for CPM 512 as de-
scribed in the specification. The tuning is done so that the following equations should be sat-
isfied: c256 = 2m + 1 and c512 = 3m + 2, where m, c256, and c512 are the numbers of rounds
for MSM , CPM , and CPM 512 , respectively. The permissible range for the parameter is m ∈
{8, 9, 10, 11, 12, 13, 14, 15, 16}. The greater the parameter is, the security of the hash function in-
creases by paying cost for the performance. We believe that m > 16 is too much taking account
of the dropping of the performance of implementations.

4.4.2 Variable Hash Size

Current specification of the hash function family AURORA* only supports hash sizes of 224, 256,
384, and 512 bits. By setting the initial vectors appropriately, we can also define an alternative
hash function family which supports variable hash sizes for the range of from 1 bit to 512 bits.
The hash functions for 1-bit to 256-bit output are obtained by modifying AURORA-256, and hash
functions for 257-bit to 512-bit output are obtained by modifying AURORA-512 version 2. These
hash functions are defined as follows.

• l-bit output hash functions for 1 ≤ l ≤ 256.

Step. 1 Let H0(256) ← 1l||0256−l.

Step. 2 Execute the AURORA-256 procedure for a message M , then obtain Hm.

Step. 3 Let (X0(64), X1(64), X2(64), X3(64))← Hm.

Step. 4 Let d = bl/4c and m = l mod 4.

Step. 5 Drop the right-most d-bit for all Xi (0 ≤ i ≤ 3)

Step. 6 Additionally, drop the right-most 1-bit for Xi (0 ≤ i ≤ m− 1)

Step. 7 Output X0||X1||X2||X3 as an l-bit hash value.

• l-bit output hash functions for 257 ≤ l ≤ 512.

Step. 1 Let H0(512) ← 1l||0512−l.

Step. 2 Execute the AURORA-512 version 2 procedure for a message M , then obtain Hm.

Step. 3 Let (X0(64), X1(64), . . . X7(64))← Hm.

Step. 4 Let d = bl/8c and m = l mod 8.

Step. 5 Drop the right-most d-bit for all Xi (0 ≤ i ≤ 8).

Step. 6 Additionally, drop the right-most 1-bit from remaining Xi (0 ≤ i ≤ m− 1).

Step. 7 Output X0||X1||X2||X3||X4||X5||X6||X7 as an l-bit hash value.
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Chapter 5

Efficient Implementation of
AURORA*

This chapter describes our evaluation results of the hash function family AURORA* in both
software and hardware implementations.

AURORA* can be implemented efficiently in software on various platforms from low-end 8-bit
processors to high-end 64-bit processors. On the NIST 32-bit reference platform, AURORA-256
achieves 24.3 cycles/byte and AURORA-512 version 2 achieves 63.9 cycles/byte; on the NIST
64-bit reference platform, AURORA-256 achieves 15.4 cycles/byte and AURORA-512 version 2
achieves 37.8 cycles/byte. In hardware, AURORA* enables a variety of implementations from
small-area to high-throughput implementations. In our evaluations using a 0.13µm CMOS ASIC
library, the smallest area of AURORA-256 is 8.9 Kgates with throughout of 1.1 Gbps, and the
highest throughput of AURORA-256 is 10.4 Gbps with area of 35.0 Kgates; the smallest area of
AURORA-512 version 2 is 12.4 Kgates with throughout of 467 Mbps, and the highest throughput
of AURORA-512 version 2 is 6.9 Gbps with area of 59.7 Kgates.

Detailed results of software and hardware implementations are shown in Sec. 5.1 and 5.2,
respectively.

5.1 Software Implementation

This section describes the software performance results of AURORA*.

5.1.1 Implementation Types

This subsection describes 5 implementation types suitable for either 32-bit or 64-bit processors: 2
types for 32-bit processors and 3 types for 64-bit processors. We only explain the implementation
methods for F functions because the performance results are strongly affected by these methods.
First, we show the notations used in this section. Next, we present five implementation types
either for 32-bit and 64-bit processors. All of these implementation types are implemented in the
optimized code we provide. Finally, we describe how to select these implementation types in our
optimized codes.

Notations

Let (x0
0, x

0
1, x

0
2, x

0
3) be an input of F-function F0 and (y0

0 , y
0
1 , y

0
2 , y

0
3) be an output of F0. Similarly,

let (x1
0, x

1
1, x

1
2, x

1
3), (x2

0, x
2
1, x

2
2, x

2
3) and (x3

0, x
3
1, x

3
2, x

3
3) be inputs of F1, F2 and F3 , respectively and

let (y1
0 , y

1
1 , y

1
2 , y

1
3), (y2

0 , y
2
1 , y

2
2 , y

2
3) and (y3

0 , y
3
1 , y

3
2 , y

3
3) be outputs of F1, F2 and F3 , respectively.

AURORA* has the following four different 32-bit input/output F functions. Those notations
are used to explain how to implement AURORA* on 32-bit processors.
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2

y3
3


 =




0x06 0x08 0x02 0x01
0x01 0x06 0x08 0x02
0x02 0x01 0x06 0x08
0x08 0x02 0x01 0x06







S(x3
0)

S(x3
1)

S(x3
2)

S(x3
3)




Also, we can consider that AURORA* has the following four different 64-bit input/output F
functions named F ∗ functions which have two 32-bit input/output F-functions as internal functions
(See Fig. 5.1). Let (x0′

0 , ..., x
0′
7 ) be an input of F ∗-function F ∗0 and (y0′

0 , ..., y
0′
7 ) be and output of F ∗0

. Similarly, let (x1′
0 , ..., x

1′
7 ), (x2′

0 , ..., x
2′
7 ) and (x3′

0 , ..., x
3′
7 ) be inputs of F ∗1 , F2′ and F ∗3 , respectively

and let (y1′
0 , ..., y

1′
7 ), (y2′

0 , ..., y
2′
7 ) and (y3′

0 , ..., y
3′
7 ) be outputs of F ∗1 , F ∗2 and F ∗3 , respectively. Those

notations are used to explain how to implement AURORA* on 64-bit processors.

F
F’F F’

(x0, x1, x2, x3)

F*

(x4, x5, x6, x7)

(y0, y1, y2, y3) (y4, y5, y6, y7)

(x0, x1, x2, x3) (x4, x5, x6, x7)

(y0, y1, y2, y3) (y4, y5, y6, y7)

32 32 32 32

32 32

32 3232 32

32 32

Figure 5.1: F ∗-function
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F ∗0 :




y0′
0

y0′
1
...
y0′

7


 =

( M0 0
0 M1

)



S(x0′
0 )

S(x0′
1 )

...
S(x0′

7 )




F ∗1 :




y1′
0

y1′
1
...
y1′

7


 =

( M1 0
0 M0

)



S(x1′
0 )

S(x1′
1 )

...
S(x1′

7 )




F ∗2 :




y2′
0

y2′
1
...
y2′

7


 =

( M2 0
0 M3

)



S(x2′
0 )

S(x2′
1 )

...
S(x2′

7 )




F ∗3 :




y3′
0

y3′
1
...
y3′

7


 =

( M3 0
0 M2

)



S(x3′
0 )

S(x3′
1 )

...
S(x3′

7 )




Type-S1

Type-S1 is a straight-forward implementation suitable for 32-bit processors. This implementation
requires the following eight different 8-bit to 32-bit tables T 0

0 , T 0
1 , T 0

2 , T 0
3 , T 1

0 , T 1
1 , T 1

2 and T 1
3 [14].

T 0
0 (x) = ( S(x), {03} × S(x), {02} × S(x), {02} × S(x) )
T 0

1 (x) = ({02} × S(x), S(x), {03} × S(x), {02} × S(x) )
T 0

2 (x) = ({02} × S(x), {02} × S(x), S(x), {03} × S(x) )
T 0

3 (x) = ({03} × S(x), {02} × S(x), {02} × S(x), S(x) )

T 1
0 (x) = ( S(x), {02} × S(x), {08} × S(x), {06} × S(x) )
T 1

1 (x) = ({06} × S(x), S(x), {02} × S(x), {08} × S(x) )
T 1

2 (x) = ({08} × S(x), {06} × S(x), S(x), {02} × S(x) )
T 1

3 (x) = ({02} × S(x), {08} × S(x), {06} × S(x), S(x) )

The following eight tables can be represented by the previous eight tables.

T 2
0 (x) = ({03} × S(x), {02} × S(x), {02} × S(x), S(x) ) = T 0

3 (x)
T 2

1 (x) = ( S(x), {03} × S(x), {02} × S(x), {02} × S(x) ) = T 0
0 (x)

T 2
2 (x) = ({02} × S(x), S(x), {03} × S(x), {02} × S(x) ) = T 0

1 (x)
T 2

3 (x) = ({02} × S(x), {02} × S(x), S(x), {03} × S(x) ) = T 0
2 (x)

T 3
0 (x) = ({06} × S(x), S(x), {02} × S(x), {08} × S(x) ) = T 1

1 (x)
T 3

1 (x) = ({08} × S(x), {06} × S(x), S(x), {02} × S(x) ) = T 1
2 (x)

T 3
2 (x) = ({02} × S(x), {08} × S(x), {06} × S(x), S(x) ) = T 1

3 (x)
T 3

3 (x) = ( S(x), {02} × S(x), {08} × S(x), {06} × S(x) ) = T 1
0 (x)

The tables T 0
0 , T 0

1 , T 0
2 and T 0

3 are used for calculating F0. Similarly, the tables T 1
0 , T 1

1 , T 1
2 and

T 1
3 are for F1, the tables T 2

0 , T 2
1 , T 2

2 and T 2
3 are for F2 , and the tables T 3

0 , T 3
1 , T 3

2 and T 3
3 are for

F3, respectively. Thus the outputs of F functions can be calculated as follows:
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(y0
0 , y

0
1 , y

0
2 , y

0
3) = T 0

0 (x0
0)⊕ T 0

1 (x0
1)⊕ T 0

2 (x0
2)⊕ T 0

3 (x0
3)

(y1
0 , y

1
1 , y

1
2 , y

1
3) = T 1

0 (x1
0)⊕ T 1

1 (x1
1)⊕ T 1

2 (x1
2)⊕ T 1

3 (x1
3)

(y2
0 , y

2
1 , y

2
2 , y

2
3) = T 2

0 (x2
0)⊕ T 2

1 (x2
1)⊕ T 2

2 (x2
2)⊕ T 2

3 (x2
3)

= T 0
3 (x2

0)⊕ T 0
0 (x2

1)⊕ T 0
1 (x2

2)⊕ T 0
2 (x2

3)
(y3

0 , y
3
1 , y

3
2 , y

3
3) = T 3

0 (x3
0)⊕ T 3

1 (x3
1)⊕ T 3

2 (x3
2)⊕ T 3

3 (x3
3)

= T 1
1 (x3

0)⊕ T 1
2 (x3

1)⊕ T 1
3 (x3

2)⊕ T 1
0 (x3

3)

The required operations for this implementation are estimated as follows:

Size of table (KB): 8
Operations of F0, F1, F2 and F3

# of table lookups: 16
# of XORs : 12

Type-S2

Type-S2 uses rotation operations to reduce the table size of Type-S1. This implementation needs
two different 8-bit to 32-bit tables. Due to the rotation operations, the number of operations is
increased. However, the table size can be reduced to 1/4 compared to Type-S1.

The tables T 0
1 , T 0

2 , T 0
3 , T 1

1 , T 1
2 , T 1

3 can be replaced as follows:

T 0
1 (x) = T 0

0 (x)≫ 8
T 0

2 (x) = T 0
0 (x)≫ 16

T 0
3 (x) = T 0

0 (x)≫ 24
T 1

1 (x) = T 1
0 (x)≫ 8

T 1
2 (x) = T 1

0 (x)≫ 16
T 1

3 (x) = T 1
0 (x)≫ 24

This implementation requires the following operations.

Size of table (KB): 2
Operations of F0, F1, F2 and F3

# of table lookups: 16
# of XORs : 12
# of rotations: 12

Type-S3

Type-S3 is a straight-forward implementation suitable for 64-bit processors. This implementation
requires the following sixteen different 8-bit to 64-bit tables.
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T 0′
0 (x) = ( S(x), {03} × S(x), {02} × S(x), {02} × S(x), 0, 0, 0, 0)
T 0′

1 (x) = ({02} × S(x), S(x), {03} × S(x), {02} × S(x), 0, 0, 0, 0)
T 0′

2 (x) = ({02} × S(x), {02} × S(x), S(x), {03} × S(x), 0, 0, 0, 0)
T 0′

3 (x) = ({03} × S(x), {02} × S(x), {02} × S(x), S(x), 0, 0, 0, 0)

T 0′
4 (x) = ( 0, 0, 0, 0, S(x), {02} × S(x), {08} × S(x), {06} × S(x) )
T 0′

5 (x) = ( 0, 0, 0, 0, {06} × S(x), S(x), {02} × S(x), {08} × S(x) )
T 0′

6 (x) = ( 0, 0, 0, 0, {08} × S(x), {06} × S(x), S(x), {02} × S(x) )
T 0′

7 (x) = ( 0, 0, 0, 0, {02} × S(x), {08} × S(x), {06} × S(x), S(x) )

T 1′
0 (x) = ( S(x), {02} × S(x), {08} × S(x), {06} × S(x), 0, 0, 0, 0)
T 1′

1 (x) = ({06} × S(x), S(x), {02} × S(x), {08} × S(x), 0, 0, 0, 0)
T 1′

2 (x) = ({08} × S(x), {06} × S(x), S(x), {02} × S(x), 0, 0, 0, 0)
T 1′

3 (x) = ({02} × S(x), {08} × S(x), {06} × S(x), S(x), 0, 0, 0, 0)

T 1′
4 (x) = ( 0, 0, 0, 0, S(x), {03} × S(x), {02} × S(x), {02} × S(x) )
T 1′

5 (x) = ( 0, 0, 0, 0, {02} × S(x), S(x), {03} × S(x), {02} × S(x) )
T 1′

6 (x) = ( 0, 0, 0, 0, {02} × S(x), {02} × S(x), S(x), {03} × S(x) )
T 1′

7 (x) = ( 0, 0, 0, 0, {03} × S(x), {02} × S(x), {02} × S(x), S(x) )

The outputs of F ∗ functions Y 0′ = (y0′
0 ||y0′

1 ||...||y0′
7 ), Y 1′ = (y1′

0 ||y1′
1 ||...||y1′

7 ), Y 2′ = (y2′
0 ||y2′

1 ||...||y2′
7 )

and Y 3′ = (y3′
0 ||y3′

1 ||...||y3′
7 ) can be calculated as follows:

Y 0′ = T 0′
0 (x0′

0 )⊕ T 0′
1 (x0′

1 )⊕ T 0′
2 (x0′

2 )⊕ T 0′
3 (x0′

3 )⊕ T 0′
4 (x0′

4 )⊕ T 0′
5 (x0′

5 )⊕ T 0′
6 (x0′

6 )⊕ T 0′
7 (x0′

7 )

Y 1′ = T 1′
0 (x1′

0 )⊕ T 1′
1 (x1′

1 )⊕ T 1′
2 (x1′

2 )⊕ T 1′
3 (x1′

3 )⊕ T 1′
4 (x1′

4 )⊕ T 1′
5 (x1′

5 )⊕ T 1′
6 (x1′

6 )⊕ T 1′
7 (x1′

7 )

Y 2′ = T 2′
0 (x2′

0 )⊕ T 2′
1 (x2′

1 )⊕ T 2′
2 (x2′

2 )⊕ T 2′
3 (x2′

3 )⊕ T 2′
4 (x2′

4 )⊕ T 2′
5 (x2′

5 )⊕ T 2′
6 (x2′

6 )⊕ T 2′
7 (x2′

7 )

Y 3′ = T 3′
0 (x3′

0 )⊕ T 3′
1 (x3′

1 )⊕ T 3′
2 (x3′

2 )⊕ T 3′
3 (x3′

3 )⊕ T 3′
4 (x3′

4 )⊕ T 3′
5 (x3′

5 )⊕ T 3′
6 (x3′

6 )⊕ T 3′
7 (x3′

7 )

This implementation requires the following operations.

Size of table (KB): 32
Operations of F ∗0 , F ∗1 , F ∗2 and F ∗3

# of table lookups: 32
# of XORs : 28

Type-S4

Type-S4 uses two rotation operations to reduce the table size of Type-S3. Since T 1′
0 , ..., T

1′
7 can

be implemented by using T 0′
0 , ..., T

0′
7 with two rotations, the table size can be reduced to half

compared to Type-S3.

Y 0′ = T 0′
0 (x0′

0 )⊕ T 0′
1 (x0′

1 )⊕ · · · ⊕ T 0′
7 (x0′

7 )

Y 1′ =
(
T 1′

0 (x1′
0 )⊕ T 1′

1 (x1′
1 )⊕ · · · ⊕ T 1′

7 (x1′
7 )
)
≫ 32

Y 2′ = T 2′
0 (x2′

0 )⊕ T 2′
1 (x2′

1 )⊕ · · · ⊕ T 2′
7 (x2′

7 )

Y 3′ =
(
T 3′

0 (x3′
0 )⊕ T 3′

1 (x3′
1 )⊕ · · · ⊕ T 3′

7 (x3′
7 )
)
≫ 32

This implementation requires the following operations.
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Size of table (KB): 16
Operations of F ∗0 , F ∗1 , F ∗2 and F ∗3

# of table lookups: 32
# of XORs : 28
# of rotations: 2

Type-S5

Type-S5 aims to reduce the table size of Type-S4 by half. It requires the following four different
8-bit to 64-bit tables.

T0(x) = ( S(x), {03} × S(x), {02} × S(x), {02} × S(x),
S(x), {02} × S(x), {08} × S(x), {06} × S(x))

T1(x) = ({02} × S(x), S(x), {03} × S(x), {02} × S(x),
{06} × S(x), S(x), {02} × S(x), {08} × S(x))

T2(x) = ({02} × S(x), {02} × S(x), S(x), {03} × S(x),
{08} × S(x), {06} × S(x), S(x), {02} × S(x))

T3(x) = ({03} × S(x), {02} × S(x), {02} × S(x), S(x),
{02} × S(x), {08} × S(x), {06} × S(x), S(x))

Y 0′ =
((
T0(x0′

0 )⊕ T1(x0′
1 )⊕ T2(x0′

2 )⊕ T3(x0′
3 )
)
&0xffffffff00000000

)⊕
((
T0(x0′

4 )⊕ T1(x0′
5 )⊕ T2(x0′

6 )⊕ T3(x0′
7 )
)
&0x00000000ffffffff

)

Y 1′ =
((
T0(x1′

0 )⊕ T1(x1′
1 )⊕ T2(x1′

2 )⊕ T3(x1′
3 )
)� 32

)⊕
((
T0(x1′

4 )⊕ T1(x1′
5 )⊕ T2(x1′

6 )⊕ T3(x1′
7 )
)� 32

)

Y 2′ =
((
T3(x2′

0 )⊕ T0(x2′
1 )⊕ T1(x2′

2 )⊕ T2(x2′
3 )
)
&0xffffffff00000000

)⊕
((
T1(x2′

4 )⊕ T2(x2′
5 )⊕ T3(x2′

6 )⊕ T0(x2′
7 )
)
&0x00000000ffffffff

)

Y 3′ =
((
T3(x3′

0 )⊕ T0(x3′
1 )⊕ T1(x3′

2 )⊕ T2(x3′
3 )
)� 32

)⊕
((
T1(x3′

4 )⊕ T2(x3′
5 )⊕ T3(x3′

6 )⊕ T0(x3′
7 )
)� 32

)

This implementation requires the following operations.

Size of table (KB): 8
Operations of F ∗0 , F ∗1 , F ∗2 and F ∗3

# of table lookups: 32
# of XORs : 28
# of ANDs : 4
# of shift operations : 4

Selecting Implementation Types in the Optimized Codes

We explain how to choose the implementation types described in the previous section from the
optimized codes. In default, Type-S1 for 32-bit processors and Type-S3 for 64-bit processors are
selected. When ’ USE ROT’ is defined in preprocessor, Type-S2 for 32-bit processors is chosen.
Similarly, when ’ USE SHIFT’ is defined, Type-S4 is selected and when ’ SHARE TABLE’ is
defined, Type-S5 is selected.
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Table 5.1: 32/64-bit Processors

Platform Processor Clock speed Memory OS Compiler
[GHz] [GB]

A Core 2 Duo 2.4 2.0 Windows Vista Visual Studio 2005
Ultimate (32-bit) Professional Edition

B Core 2 Duo 2.4 2.0 Windows Vista Visual Studio 2005
Ultimate (64-bit) Professional Edition

C Opteron 2.6 16.0 Linux kernel 2.4 gcc 3.2.3 (x64)
D Pentium 4 2.26 1.0 Red Hat Linux 7.3 gcc 2.96

Table 5.2: 8-bit Processors

Platform Vendor Processor Compiler IDE
E ATMEL megaAVR family gcc-4.3.0 AVR Studio 4.1.4

(WinAVR 20080610) build 589
F RENESAS H8/300 family, ch38 HEW 4.03.00.001

3217 Group V.6.02.00.000 (+H8/300 tool chain 6.2.0)

5.1.2 Evaluation Results

This section shows the evaluation results of AURORA-224/256 and AURORA-384/512 version 2
on 32/64 bit processors. As for AURORA-224/256, we also show the evaluation results on 8 bit
processors.

The number of cycles/byte for 1 byte message on each table implicate the minimum number of
clock cycles to generate one message digest. For instance, the number of clock cycles of AURORA-
224 implemented by Type-S1 (unroll) to generate one message digest of 1 byte message is 1848
cycles on the Platform A. Since there is no calculation for setting up the algorithms in the optimized
code (e.g., build internal tables), the results on the tables are precise clock cycles to generate hash
values.

32/64-bit Processors

We present the current evaluation results on performance of AURORA-224/256 and AURORA-
384/512 version 2 on 32/64-bit processors. The platforms used for the evaluation are shown in
Table 5.1. We use cycle counters included in ’cycle.h’ [13]. This code provides machine dependent
cycle counters.

Tables 5.3, 5.4, 5.5 and 5.6 represent the evaluation results of AURORA-224, AURORA-
256, AURORA-384 version 2 and AURORA-512 version 2, respectively. All implementation types
described in Sec. 5.1.1 are evaluated for each hash function of AURORA*. Bold figures indicate the
best results of each AURORA* hash function on each platform. For AURORA-224/256, two types
of loop structure ‘unroll’ and ‘looped’ are evaluated. In the ‘unroll’ structure, the round functions
of AURORA* are unrolled; in the ‘looped’ structure, the round functions are implemented by
loop function. For AURORA-384/512 version 2, only ‘looped’ structure is evaluated because
‘unrolled’ structure not only require more code size but also is even slower than ‘looped’ structure.
As reference, we show the evaluation results of SHA-256 and SHA-512 implemented by Brian
Gladman [43] in Tables 5.7 and 5.8, respectively.

8-bit Processors

We present the evaluation results on performance of AURORA-224/256 on 8-bit processors at
the present. The platforms used for the evaluation are shown in Table 5.2. Table 5.9 shows
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the evaluation results of the compression function for AURORA-224/256. Tables 5.10 and 5.11
represent the evaluation results of AURORA-224 and AURORA-256, respectively.
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Table 5.3: AURORA-224 on 32/64-bit processors

Hash Function 1 CF call code size
[cycles/byte] [cycles] [bytes]

message size [bytes] 1 10 100 1,000 10,000 - -
Platform A (Core 2 Duo (32-bit))

Type-S1 (unroll) 1,847.4 188.4 36.6 26.2 25.3 1,598.1 142,926
(looped) 1,860.8 190.2 36.8 26.6 25.6 1,616.9 64,996

Type-S2 (unroll) 1,788.9 183.2 35.7 25.3 24.3 1,534.8 179,662
(looped) 1,929.4 195.8 38.1 27.3 26.3 1,662.1 60,172

Type-S3 (unroll) 3,117.2 317.1 62.4 45.8 44.5 2,821.4 198,002
(looped) 2,586.0 265.6 51.8 37.2 35.8 2,285.9 121,034

Type-S4 (unroll) 2,803.6 283.9 55.4 41.0 39.8 2,535.4 174,070
(looped) 2,625.7 265.4 51.7 37.9 36.8 2,334.0 96,262

Type-S5 (unroll) 2,686.2 272.6 52.9 39.0 37.7 2,396.4 163,270
(looped) 2,477.9 251.3 48.7 35.7 34.6 2,193.2 83,990

Platform B (Core 2 Duo (64-bit))
Type-S1 (unroll) 1,270.9 125.6 23.9 17.3 16.8 1,066.8 149,072

(looped) 1,412.5 140.1 26.7 19.6 19.0 1,204.9 66,326
Type-S2 (unroll) 1,490.4 147.8 28.2 20.9 20.3 1,288.1 189,792

(looped) 1,608.2 159.6 30.4 22.6 22.0 1,397.8 62,126
Type-S3 (unroll) 1,155.4 119.0 22.5 15.9 15.4 980.7 205,626

(looped) 1,308.2 132.7 25.3 18.2 17.6 1,119.1 128,490
Type-S4 (unroll) 1,177.8 119.3 22.6 16.2 15.7 995.1 181,694

(looped) 1,262.2 128.7 24.3 17.7 17.1 1,086.2 103,718
Type-S5 (unroll) 1,342.9 134.9 25.5 18.7 18.2 1,156.4 170,894

(looped) 1,421.3 142.8 27.0 20.0 19.4 1,233.9 91,446
Platform C (Opteron)

Type-S1 (unroll) 2,742.1 276.1 50.2 36.4 35.3 2,246.4 57,305
(looped) 2,912.1 292.1 54.0 39.5 38.3 2,455.0 21,641

Type-S2 (unroll) 2,972.8 299.7 55.3 40.6 39.3 2,521.9 51,241
(looped) 3,091.9 311.5 57.8 42.6 41.3 2,654.4 15,625

Type-S3 (unroll) 2,196.4 221.9 40.0 28.9 27.9 1,773.9 83,609
(looped) 1,590.4 161.1 28.1 19.3 18.5 1,179.0 46,169

Type-S4 (unroll) 2,114.6 213.8 38.7 27.7 26.7 1,702.2 70,073
(looped) 1,611.0 164.8 28.7 19.8 19.0 1,197.1 30,073

Type-S5 (unroll) 2,173.0 220.0 39.7 28.4 27.4 1,748.5 60,537
(looped) 1,709.0 173.3 30.0 20.1 19.2 1,234.9 21,881

Platform D (Pentium 4)
Type-S1 (unroll) 4,299.5 436.3 79.5 53.7 51.4 3,279.8 59,772

(looped) 4,197.9 428.0 78.9 52.0 49.7 2,930.5 22,092
Type-S2 (unroll) 5,069.7 498.5 94.7 67.3 65.2 4,142.2 55,172

(looped) 5,093.4 525.4 100.3 68.8 66.6 3,236.1 16,560
Type-S3 (unroll) 10,748.6 1,082.7 199.8 148.4 143.9 9,155.1 127,828

(looped) 7,504.9 755.5 143.9 106.1 103.0 6,588.6 55,436
Type-S4 (unroll) 10,486.6 1,051.0 194.2 143.6 139.4 8,905.0 103,356

(looped) 7,471.2 762.0 142.0 103.7 100.4 6,438.1 38,536
Type-S5 (unroll) 10,005.3 1,010.8 188.4 139.6 135.3 8,579.3 89,528

(looped) 7,213.3 725.8 136.8 99.1 96.3 6,210.2 29,580
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Table 5.4: AURORA-256 on 32/64-bit processors

Hash Function 1 CF call code size
[cycles/byte] [cycles] [bytes]

message size [bytes] 1 10 100 1,000 10,000 - -
Platform A (Core 2 Duo (32-bit))

Type-S1 (unroll) 1,836.3 185.7 36.3 26.2 25.4 1,598.1 142,926
(looped) 1,837.4 188.2 36.5 26.5 25.6 1,616.9 64,996

Type-S2 (unroll) 1,770.2 179.9 35.0 25.1 24.3 1,534.8 179,662
(looped) 1,902.6 193.6 37.6 27.2 26.3 1,662.1 60,172

Type-S3 (unroll) 3,069.0 311.5 61.6 45.8 44.3 2,821.4 198,002
(looped) 2,544.0 259.1 50.9 36.9 35.8 2,285.9 121,034

Type-S4 (unroll) 2,787.6 280.9 55.1 41.0 39.8 2,535.4 174,070
(looped) 2,585.4 260.7 51.2 37.9 36.7 2,334.0 96,262

Type-S5 (unroll) 2,649.7 267.4 52.4 38.9 37.7 2,396.4 163,270
(looped) 2,447.1 248.2 48.4 35.7 34.6 2,193.2 83,990

Platform B (Core 2 Duo (64-bit))
Type-S1 (unroll) 1,235.3 123.4 23.6 17.3 16.8 1,066.8 149,072

(looped) 1,374.9 137.5 26.4 19.5 19.0 1,204.9 66,326
Type-S2 (unroll) 1,459.8 145.1 28.0 20.8 20.2 1,288.1 189,792

(looped) 1,576.1 156.3 30.4 22.6 22.0 1,397.8 62,126
Type-S3 (unroll) 1,142.2 115.4 22.3 15.9 15.4 980.7 205,626

(looped) 1,273.7 130.1 25.0 18.1 17.6 1,119.1 128,490
Type-S4 (unroll) 1,154.8 117.2 22.3 16.2 15.7 995.1 181,694

(looped) 1,247.7 126.0 24.1 17.7 17.1 1,086.2 103,718
Type-S5 (unroll) 1,315.3 132.6 25.2 18.7 18.2 1,156.4 170,894

(looped) 1,392.6 140.4 26.8 20.0 19.4 1,233.9 91,446
Platform C (Opteron)

Type-S1 (unroll) 2,575.6 262.1 48.9 36.3 35.2 2,246.4 57,305
(looped) 2,792.2 280.1 52.8 39.3 38.2 2,455.0 21,641

Type-S2 (unroll) 2,848.6 286.9 54.0 40.5 39.3 2,521.9 51,241
(looped) 2,978.0 299.8 56.6 42.4 41.3 2,654.4 15,625

Type-S3 (unroll) 2,074.4 209.9 38.8 28.8 27.9 1,773.9 83,609
(looped) 1,476.0 149.7 27.0 19.2 18.5 1,179.0 46,169

Type-S4 (unroll) 2,005.7 202.5 37.6 27.6 26.7 1,702.2 70,073
(looped) 1,492.9 153.5 27.6 19.7 19.0 1,197.1 30,073

Type-S5 (unroll) 2,065.0 213.5 39.0 28.3 27.4 1,748.5 60,537
(looped) 1,534.7 155.9 28.2 19.9 19.2 1,234.9 21,881

Platform D (Pentium 4)
Type-S1 (unroll) 4,036.5 422.3 77.9 53.5 52.2 3,279.8 59,772

(looped) 3,963.2 403.6 76.6 52.2 49.6 2,930.5 22,092
Type-S2 (unroll) 5,069.7 498.5 94.7 67.3 65.2 4,142.2 55,172

(looped) 5,318.5 515.0 101.0 69.2 66.5 3,236.1 16,560
Type-S3 (unroll) 10,475.5 1,045.4 196.9 148.2 143.8 9,155.1 127,828

(looped) 7,297.2 736.2 142.1 106.0 102.8 6,588.6 55,436
Type-S4 (unroll) 10,055.7 1,016.1 191.1 143.3 139.4 8,905.0 103,356

(looped) 7,256.2 735.6 139.7 103.5 100.4 6,438.1 38,536
Type-S5 (unroll) 9,712.1 984.7 185.5 139.1 134.9 8,579.3 89,528

(looped) 6,992.4 709.0 134.6 98.9 96.3 6,210.2 29,580
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Table 5.5: AURORA-384 version 2 on 32/64-bit processors

Hash Function 1 CF call code size
[cycles/byte] [cycles] [bytes]

message size [bytes] 1 10 100 1,000 10,000 - -
Platform A (Core 2 Duo (32-bit))

Type-S1 (looped) 4,657.4 466.3 91.6 110.3 68.1 4,317.2 71,042
Type-S2 (looped) 4,353.9 441.8 86.1 65.8 63.9 4,055.1 69,182
Type-S3 (looped) 6,629.6 666.2 131.3 100.4 97.9 6,175.6 125,704
Type-S4 (looped) 5,631.8 567.0 110.9 84.8 82.7 6,111.5 101,012
Type-S5 (looped) 5,427.9 548.2 107.2 81.9 79.9 5,064.0 88,792

Platform B (Core 2 Duo (64-bit))
Type-S1 (looped) 2,994.4 303.8 58.3 44.8 43.6 2,764.2 72,752
Type-S2 (looped) 3,390.9 340.7 66.7 51.2 50.1 3,172.7 71,756
Type-S3 (looped) 2,740.1 274.6 52.9 39.7 38.7 2,441.3 133,132
Type-S4 (looped) 2,651.1 266.3 51.6 38.8 37.8 2,403.3 108,440
Type-S5 (looped) 2,895.6 291.1 56.4 42.8 41.7 2,649.6 96,220

Platform C (Opteron)
Type-S1 (looped) 4,077.7 410.8 77.2 57.9 56.3 3,568.8 25,460
Type-S2 (looped) 4,463.8 449.6 84.3 63.1 61.3 3,889.5 19,892
Type-S3 (looped) 3,177.0 320.6 59.3 43.5 42.1 2,680.1 48,740
Type-S4 (looped) 3,213.8 323.2 59.5 43.8 42.5 2,697.5 32,516
Type-S5 (looped) 3,447.1 347.6 64.6 48.0 46.6 2,964.0 24,484

Platform D (Pentium 4)
Type-S1 (looped) 9,861.4 1,001.3 192.1 145.2 141.4 9,497.9 26,164
Type-S2 (looped) 10,847.3 1,060.2 204.5 157.5 153.6 9,663.7 20,496
Type-S3 (looped) 16,045.5 1,621.1 310.1 237.8 232.0 14,566.9 61,300
Type-S4 (looped) 15,094.8 1,518.9 292.4 223.1 217.5 13,845.5 43,952
Type-S5 (looped) 14,622.1 1,476.1 283.6 216.3 210.9 13,642.5 34,988
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Table 5.6: AURORA-512 version 2 on 32/64-bit processors

Hash Function 1 CF call code size
[cycles/byte] [cycles] [bytes]

message size [bytes] 1 10 100 1,000 10,000 - -
Type-S1 (looped) 4,614.0 464.9 91.4 69.8 68.1 4,317.2 71,042
Type-S2 (looped) 4,350.8 439.1 86.1 65.6 63.9 4,055.1 69,182
Type-S3 (looped) 6,490.7 655.8 130.8 100.3 97.9 6,175.6 125,704
Type-S4 (looped) 5,598.6 561.6 110.5 84.8 82.7 6,111.5 101,012
Type-S5 (looped) 5,408.8 543.3 106.7 81.8 79.9 5,064.0 88,792

Platform B (Core 2 Duo (64-bit))
Type-S1 (looped) 2,943.8 295.4 57.9 44.6 43.6 2,764.2 72,752
Type-S2 (looped) 3,365.0 336.2 66.3 51.2 50.1 3,172.7 71,756
Type-S3 (looped) 2,667.8 268.5 52.4 39.6 38.6 2,441.3 133,132
Type-S4 (looped) 2,607.1 261.9 50.6 38.8 37.8 2,403.3 108,440
Type-S5 (looped) 2,857.5 286.6 55.8 42.8 41.8 2,649.6 96,220

Platform C (Opteron)
Type-S1 (looped) 3,895.3 391.7 75.2 57.7 56.2 3,568.8 25,460
Type-S2 (looped) 4,244.2 426.8 82.0 62.8 61.3 3,889.5 19,892
Type-S3 (looped) 2,999.9 302.4 57.5 43.3 42.3 2,680.1 48,740
Type-S4 (looped) 3,008.6 303.5 57.5 43.6 42.6 2,697.5 32,516
Type-S5 (looped) 3,253.4 327.8 62.7 47.8 46.5 2,964.0 24,484

Platform D (Pentium 4)
Type-S1 (looped) 9,916.8 991.4 191.7 145.0 141.3 9,497.9 26,164
Type-S2 (looped) 10,715.7 1,114.7 206.9 157.9 154.4 9,663.7 20,496
Type-S3 (looped) 15,928.9 1,594.4 308.9 237.0 231.6 14,566.9 61,300
Type-S4 (looped) 14,851.3 1,498.3 289.7 222.6 217.3 13,845.5 43,952
Type-S5 (looped) 14,457.9 1,449.4 281.2 215.9 210.7 13,642.5 34,988
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Table 5.7: SHA-256 on 32/64-bit processors

Hash Function 1 CF call code size
[cycles/byte] [cycles] [bytes]

message size [bytes] 1 10 100 1,000 10,000 - -
Platform A (Core 2 Duo (32-bit))

1,609.3 162.2 31.0 23.1 22.5 1,302.1 43,802
Platform B (Core 2 Duo (64-bit))

1,376.1 138.6 26.9 20.5 20.2 1,198.1 44,452
Platform C (Opteron)

1,686.0 169.4 31.9 24.0 23.3 1,403.0 13,745
Platform D (Pentium 4)

3,084.2 311.4 57.2 42.5 41.2 2,390.3 23,668

Table 5.8: SHA-512 on 32/64-bit processors

Hash Function CF call code size
[cycles/byte] [cycles] [bytes]

message size [bytes] 1 10 100 1,000 10,000 - -
Platform A (Core 2 Duo (32-bit))

6,191.1 621.2 61.2 43.6 42.5 5,118.4 43,802
Platform B (Core 2 Duo (64-bit))

1,805.1 181.5 19.0 13.6 13.3 1,512.6 44,452
Platform C (Opteron)

2,237.0 224.7 22.7 15.4 14.9 1,779.5 13,745
Platform D (Pentium 4)

15,873.8 1,684.2 176.5 120.7 107.8 13,269.1 23,668
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Table 5.9: Compression functions for AURORA-224/256 on 8-bit processors

CF Platform 1 CF call code size stack
[cycles/byte] [bytes] [bytes]

AURORA-224/256 Platform E 446,675 6,158 204
Platform F 3,410,460 4,596 216

Table 5.10: AURORA-224 on 8-bit processors

Hash Function code size stack
[cycles/byte] [bytes] [bytes]

message size 1 10 100 400 1,000 - -
[bytes]

Platform E 451,055 45,255.0 9,147.8 8,002.6 7,326.3 6,158 442
Platform F 3,428,682 343,170.6 68,803.2 60,169.4 55,024.0 4,596 320

Table 5.11: AURORA-256 on 8-bit processors

Hash Function code size stack
[cycles/byte] [bytes] [bytes]

message size 1 10 100 400 1,000 - -
[bytes]

Platform E 450,601 45,209.6 9,143.3 8,001.5 7,325.9 6,158 442
Platform F 3,425,578 342,922.6 68,767.1 60,158.0 55,022.9 4,596 300
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5.2 Hardware Implementation

This section describes hardware optimization techniques and several types of hardware implemen-
tations for AURORA*, and then shows hardware performance results of AURORA*. Since the
implementations of AURORA-224 and AURORA-384 version 2 are basically same as AURORA-
256 and AURORA-512 version 2, respectively, except the initial value and truncation of final
hash value, we designed and evaluated the implementations of AURORA-256 and AURORA-512
version 2.

5.2.1 Optimization Techniques of F-functions

We introduce optimization techniques of F-functions focusing on an S-box and matrices.

S-box

The 8-bit S-box of AURORA* consists of three layers: affine transformation f , inversion over
GF((24)2) and affine transformation g. In Fig. 5.2 we show the schematic design of our S-box
implementation. The inversion is performed in GF((24)2) defined by the following polynomials:

{
GF(24) : p(x) = x4 + x+ 1
GF((24)2) : q(x) = x2 + x+ λ (λ = {1001} ∈ GF(24)) .

For an arbitrary element a0β + a1 over GF((24)2) where a0, a1 ∈ GF(24) and β is a root of q(x),
the inversion b0β + b1 = (a0β + a1)−1 (b0, b1 ∈ GF(24)) is computed as follows [47]:

b0 = a0∆−1,

b1 = (a0 + a1)∆−1,

∆ = (a0 + a1)a1 + λa2
0.

These arithmetics except an inversion over GF(24), which is automatically generated by logic
synthesis tool according to 16 entries × 4 bits table, can be implemented using NAND logic gates
and XOR logic gates.

x2 λ
x-1f g

inversion  over  GF((24)2)

4

4

8 88 8

4

4

Figure 5.2: Schematic design of S-box implementation

In Sec. 5.2.3, we apply not only this type of S-box implementation to all the hardware designs
of AURORA* but also table-lookup S-box implementation using 256 entries × 8 bits table to
Type-H1 implementation described in Sec. 5.2.2 for higher throughput.

Matrices M0, M1, M2 and M3

The 4×4 matricesM0,M1,M2 andM3 are multiplied to the outputs of S-boxes as a linear (4, 4)
multipermutation over GF(28) which is defined by an irreducible polynomial x8 +x4 +x3 +x2 +1.
An addition of two elements in GF(28), denoted by ⊕, is equivalent to a bitwise XOR operation of
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their representations as an 8-bit binary string, which costs 8 XOR logic gates. A multiplication in
GF(28), denoted by ×, corresponds to a multiplication of polynomials modulo x8 +x4 +x3 +x2 +1.
For an element a in GF(28), {02} × a, {04} × a and {08} × a require 3, 5 and 8 XOR logic gates,
respectively.

The matrix M0 can be decomposed into the following form by using the common term.



01 02 02 03
03 01 02 02
02 03 01 02
02 02 03 01


 =




01 00 00 01
01 01 00 00
00 01 01 00
00 00 01 01







01 00 02 00
00 01 00 02
02 00 01 00
00 02 00 01


+




00 00 00 02
02 00 00 00
00 02 00 00
00 00 02 00




For an input vector (x0, x1, x2, x3) and an output vector (y0, y1, y2, y3), the multiplication byM0

can be computed through the following equations.




a0 = {02} × x0

a1 = {02} × x1

a2 = {02} × x2

a3 = {02} × x3





b0 = a2 ⊕ x0

b1 = a3 ⊕ x1

b2 = a0 ⊕ x2

b3 = a1 ⊕ x3





y0 = a3 ⊕ b0 ⊕ b3
y1 = a0 ⊕ b1 ⊕ b0
y2 = a1 ⊕ b2 ⊕ b1
y3 = a2 ⊕ b3 ⊕ b2

The total number and the maximum delay of XOR gates required for multiplication by M0 are
112 and 4, respectively.

The matrix M1 can be decomposed into the following form by using the common term.



01 06 08 02
02 01 06 08
08 02 01 06
06 08 02 01


 =




01 04 00 00
00 01 04 00
00 00 01 04
04 00 00 01







01 02 00 00
00 01 02 00
00 00 01 02
02 00 00 01


+




00 00 00 02
02 00 00 00
00 02 00 00
00 00 02 00




For an input vector (x0, x1, x2, x3) and an output vector (y0, y1, y2, y3), the multiplication byM1

can be computed through the following equations.




a0 = {02} × x0

a1 = {02} × x1

a2 = {02} × x2

a3 = {02} × x3





b0 = a1 ⊕ x0

b1 = a2 ⊕ x1

b2 = a3 ⊕ x2

b3 = a0 ⊕ x3





c0 = {04} × b0
c1 = {04} × b1
c2 = {04} × b2
c3 = {04} × b3





y0 = a3 ⊕ b0 ⊕ c1
y1 = a0 ⊕ b1 ⊕ c2
y2 = a1 ⊕ b2 ⊕ c3
y3 = a2 ⊕ b3 ⊕ c0

The total number and the maximum delay of XOR gates required for multiplication by M1 are
128 and 4, respectively.

For Type-H5 implementation described in Sec. 5.2.2, the circuits required for multiplication
by the matrix M0 and M1 are merged. For an input vector (x0, x1, x2, x3) and an output vec-
tor (y0, y1, y2, y3), the multiplication by Mi (i = 0, 1) can be computed through the following
equations.





a0 = {02} × x0

a1 = {02} × x1

a2 = {02} × x2

a3 = {02} × x3





b0 = a1 ⊕ x0

b1 = a2 ⊕ x1

b2 = a3 ⊕ x2

b3 = a0 ⊕ x3





c0 = b0 ⊕ a3

c1 = b1 ⊕ a0

c2 = b2 ⊕ a1

c3 = b3 ⊕ a2





d0 = a3 ⊕ x0

d1 = a0 ⊕ x1

d2 = a1 ⊕ x2

d3 = a2 ⊕ x3





e0 = {04} × b0
e1 = {04} × b1
e2 = {04} × b2
e3 = {04} × b3





f0 = (i == 1)? e1 : d3

f1 = (i == 1)? e2 : d0

f2 = (i == 1)? e3 : d1

f3 = (i == 1)? e0 : d2





y0 = c0 ⊕ f0

y1 = c1 ⊕ f1

y2 = c2 ⊕ f2

y3 = c3 ⊕ f3

The total number of XOR gates and 2:1 selector gates required for multiplication byM0/M1 are
160 and 32.

The matricesM2 andM3 are composed of the common row vectors toM0 andM1. Therefore,
the multiplications byM2 andM3 are computed by substituting elements of an output vector of
the multiplication by M0 and M1, respectively.
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Figure 5.3: Dividing F-functions for pipeline architecture

5.2.2 Implementation Types

This section describes several types of hardware implementations. First, we introduce how to
divide F-functions for pipeline architecture. Next, we show five types of hardware implementations
for AURORA-256: Type-H1, Type-H2, Type-H3, Type-H4 and Type-H5 implementation. Then,
we show three types of hardware implementations for AURORA-512 version 2: Type-H1, Type-H4
and Type-H5 implementation.

All the implementations do not include padding function; we assume that an input message is
padded and divided into message blocks of 512 bits. We give the data path architecture of each
implementation, where all registers represented by a box with shadow are composed of registers
without enable signal.

Dividing F-functions for pipeline architecture

In Fig. 5.3, we show the architecture of F-functions F0 and F1. f , I and g in the figure represent
the circuit of the function f , the inverse function over GF((24)2) and the function g in the S-box S,
respectively. We apply pipeline architecture to some types of implementations in order to achieve
higher throughput. By dividing the circuit F0 into the two parts α and β and inserting registers
between α and β, we can shorten the critical path of the designs and improve the maximum
operating frequency. Similarly, the circuit F1 is divided into the two parts α and γ.

AURORA-256 Type-H1

AURORA-256 Type-H1 implementation processes one round of one message scheduling module
MSM and one chaining value processing module CPM in parallel with 1 cycle latency. It requires
8 F-function circuits and takes 18 cycles for both the compression function CF and the finalization
function FF . Fig. 5.4 shows the data path architecture of AURORA-256 Type-H1 implementation.
It is divided into two blocks: the message scheduling block and the chaining value processing block.

In the message scheduling block, a 512-bit message block is input in two cycles; the left 256-bit
ML is input at the 1st cycle and the right 256-bit MR is input at the 2nd cycle. The 256-bit
intermediate values of MSL (MSFL) are stored in eight 32-bit registers {R00, . . . , R07} at the
cycle of even order and stored in eight 32-bit registers {R10, . . . , R17} at the cycle of odd order.
On the other hand, the 256-bit intermediate values of MSR (MSFR) are stored in {R10, . . . , R17}
at the cycle of even order and stored in {R00, . . . , R07} at the cycle of odd order. The pipeline
architecture described in Sec. 5.2.1 is introduced into the message scheduling block; 32-bit registers
are inserted between α and β, and between α and γ. The architecture cannot shorten the critical
path of the whole circuit because the longer paths exist in the chaining value processing block, but
can reduce the rate of increase in area of the message scheduling block at high operating frequency.
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Figure 5.4: Data path architecture of AURORA-256 Type-H1 implementation

We note that the outputs of β and γ are byte-rotated to the left and to the right, respectively,
when the 256-bit intermediate values of MSR (MSFR) are processed.

In the chaining value processing block, the chaining value stored in eight 32-bit registers
{C00, . . . , C07} is set into eight 32-bit registers {R20, . . . , R27} through the byte diffusion circuit
BD after being XORed with the data fed from the message scheduling block and constant values
CONC . BD is implemented by simple wiring of byte data without any transistors. From the
2nd cycle to the 17th cycle, the data stored in {R20, . . . , R27} are input to the round function,
and its output is re-stored into {R20, . . . , R27} through BD after being XORed with the data
fed from the message scheduling block and CONC . The data fed from the message scheduling
block pass through the data rotating function PROTL at the cycle of odd order and PROTR
at the cycle of even order, respectively. At the 18th cycle, the output of the round function
are XORed with the data fed from the message scheduling block and the chaining value stored
in {C00, . . . , C07}, and then re-stored into {C00, . . . , C07}. The 128-bit XOR gates required for
updating {C01, C03, C05, C07} can be merged with those for CONC by appending a 128-bit 2:1
selector.

AURORA-256 Type-H2

AURORA-256 Type-H2 implementation processes one round of one MSM and one CPM in
parallel with 2 cycles latency, when the left 128-bit data are processed first. It requires 4 F-function
circuits and takes 36 cycles for both CF and FF . Fig. 5.5 shows the data path architecture
of AURORA-256 Type-H2 implementation, where the data path width is 128 bits. A 512-bit
message block is input in 128-bit blocks using 4 cycles. PROTLH and PROTRH in the figure
show the functions whose input and output are the left 128-bit of the input and output of the data
rotating function PROTL and PROTR, respectively. The number of F-functions and XOR gates
are reduced to half compared to those in Type-H1 implementation. The pipeline architecture is
introduced into the message scheduling block in order to reduce the rate of increase in area of the
message scheduling at high operating frequency.

In a 128-bit data path architecture such as Type-H2 implementation, the byte diffusion function
BD cannot be implemented only by simple wiring of byte data; generally it requires a 256-bit 2:1
selector. In our implementations, we utilize the 128-bit byte diffusion (BD) circuit, as shown in
Fig. 5.6. The 128-bit BD circuit consists of byte wiring, sixteen 8-bit registers and sixteen 8-bit 2:1
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Figure 5.6: 128-bit Byte Diffusion (BD) circuit

selectors, where selectors of 128 bits can be reduced. The 256-bit data, which are input into the
128-bit BD circuit in two clock cycles, are output in the order corresponding to BD by controlling
selectors.

AURORA-256 Type-H3

AURORA-256 Type-H3 implementation processes one round of one MSM or one CPM by turns
with 1 cycle latency. It requires 4 F-function circuits and takes 36 cycles for both CF and FF .
Fig. 5.7 shows the data path architecture of AURORA-256 Type-H3 implementation. Unlike
AURORA-256 Type-H1 and Type-H2 implementation, the round function circuit is shared for
MSM and CPM . The round function is processed by repeating the following order:

MSL (MSFL)→ CP (CPF )→ MSR (MSFR)→ CP (CPF )→ · · ·
We can shorten the critical path of the whole circuit and improve the maximum operating fre-
quency by applying the pipeline architecture into the round function circuit.

The left 256-bit ML of a 512-bit message block is input at the 1st cycle, and then the
256-bit intermediate values of MSL (MSFL) are stored in eight 32-bit registers {R00, . . . , R07},
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Figure 5.7: Data path architecture of AURORA-256 Type-H3 implementation

{R10, . . . , R17} or {R20, . . . , R27} by repeating the following order:

{R00, . . . , R07} → {R10, . . . , R17} → {R20, . . . , R27} → {R20, . . . , R27} → · · ·

The right 256-bit MR of a 512-bit message block is input at the 3rd cycle, and then the intermediate
values of MSR (MSFR) are stored in registers by repeating the same order as MSL. On the
other hand, the chaining value stored in eight 32-bit registers {C00, . . . , C07} is loaded at the 2nd
cycle, and then the 256-bit intermediate values of CP (CPF ) are stored in {R00, . . . , R07} or
{R10, . . . , R17} by repeating the following order:

{R00, . . . , R07} → {R10, . . . , R17} → · · ·

The input and output of F-functions must be adequately selected because either the kind or
the positioning of F-functions among MSL (MSFL), MSR (MSFR) and CP (CPF ) is different;
for the intermediate values of MSR (MSFR), the output of F-functions must be byte-rotated to
the left or right. For the intermediate values of CP (CPF ), both of the 1st and 3rd 32-bit line, and
the 5th and 7th 32-bit line of the input and output of F-functions must be swapped. Note that the
chaining value to be fed forward is XORed into the intermediate values of MSR (MSFR) through
PROTL in advance at the 35th cycle, which can reduce one cycle for updating the chaining value.

AURORA-256 Type-H4

AURORA-256 Type-H4 implementation is hybrid of Type-H2 and Type-H3 implementation; it
processes one round of one MSM or one CPM by turns with 2 cycles latency. It requires 2 F-
function circuits and takes 72 cycles for both CF and FF . Fig. 5.8 shows the data path architecture
of AURORA-256 Type-H4 implementation, where the data path width is 128 bits. The round
function circuit is shared for MSM and CPM in the same way as Type-H3 implementation. The
processing order of the round function is also the same as AURORA-256 Type-H3 implementation,
but it requires two clock cycles for each round function. The pipeline architecture is introduced
into the round function circuit, which can improve the maximum operating frequency.

The left 256-bit ML of a 512-bit message block is input in 128-bit blocks at the 1st and 2nd
cycle, and then the intermediate values of MSL (MSFL) are stored in registers by repeating the
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Figure 5.8: Data path architecture of AURORA-256 Type-H4 implementation

following order:

{R00, . . . , R03} → {R10, . . . , R13} → {R00, . . . , R03} → {R10, . . . , R13} → {R20, . . . , R23} →
128-bit BD circuit→ {R30, . . . , R33} → {R40, . . . , R43} → · · ·

The right 256-bit MR of a 512-bit message block is input in 128-bit blocks at the 5th and 6th cycle,
and then the intermediate values of MSR (MSFR) are stored in registers by repeating the same
order as MSL. On the other hand, the chaining value stored in four 32-bit registers {C10, . . . , C13}
and {C00, . . . , C03} is loaded via {C10, . . . , C13} at the 3rd and 4th cycle, and then the 256-bit
intermediate values of CP (CPF ) are stored in registers by repeating the following order:

{R20, . . . , R23} → 128-bit BD circuit→ {R30, . . . , R33} → {R40, . . . , R43} → · · ·

Note that the chaining value to be fed forward is XORed into the intermediate values of MSR
(MSFR) in advance at the 69th and 70th cycle, which can reduce two cycles for updating the
chaining value.

AURORA-256 Type-H5

AURORA-256 Type-H5 implementation processes one round of one MSM or one CPM by turns
with 4 cycles latency. It requires only one F-function circuit and takes 144 cycles for both CF
and FF . Fig. 5.9 shows the data path architecture of AURORA-256 Type-H5 implementation,
where the data path width is 64 bits. The processing order of the round function as well as basic
architecture is the same as Type-H4 implementation except the data path width. The circuits
required for multiplication by the matrix M0 and M1 are merged by the method described in
Sec. 5.2.1.

In a 64-bit data path architecture, the 256-bit byte diffusion function BD cannot be imple-
mented only by simple wiring of byte data. We utilize the 64-bit byte diffusion (BD) circuit, as
shown in Fig. 5.10. It consists of byte wiring, twenty-five 8-bit registers and thirteen 8-bit 2:1
selectors. 256-bit data, which are input into the 64-bit BD circuit in four clock cycles, are output
in the order corresponding to BD by controlling selectors.
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Figure 5.10: 64-bit Byte Diffusion (BD) circuit

The left 256-bit ML of a 512-bit message block is input in 64-bit blocks from the 1st cycle
to the 4th cycle, and then the intermediate values of MSL (MSFL) are stored in registers by
repeating the following steps:

{R00, R01} → {R10, R11} → {R20, R21} → {R30, R31} → {R00, R01} →
{R10, R11} → {R20, R21} → {R30, R31} → {R40, R41} → 64-bit BD circuit→
{R50, R51} → {R60, R61} → {R70, R71} → {R80, R81} → · · ·

The right 256-bit MR of a 512-bit message block is input in 64-bit blocks from the 9th cycle to the
12th cycle, and then the intermediate values of MSR (MSFR) are stored in registers by repeating
the same order as MSL.

On the other hand, the chaining value stored in two 32-bit registers {C30, C31}, {C20, C21},
{C10, C11} and {C00, C01} is loaded via {C30, C31} from the 5th cycle to the 8th cycle, and then
the 256-bit intermediate values of CP (CPF ) are stored in registers by repeating the following
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Figure 5.11: Data path architecture of AURORA-512 version 2 Type-H1 implementation

steps:

{R40, R41} → 64-bit BD circuit→ {R50, R51} → {R60, R61} →
{R70, R71} → {R80, R81} → · · ·

Note that the chaining value to be fed forward is XORed into the intermediate values of MSR
(MSFR) in advance from the 137th cycle to the 140th cycle, which can reduce four cycles for
updating the chaining value.

AURORA-512 version 2 Type-H1

AURORA-512 version 2 Type-H1 implementation processes one round of one message scheduling
module MSM and two chaining value processing modules CPM 512 in parallel with 1 cycle latency.
It requires 12 F-function circuits and takes 27 cycles for both the compression function CF 512

and the finalization function FF 512 . Fig. 5.11 shows the data path architecture of AURORA-512
version 2 Type-H1 implementation. It is divided into two blocks: the message scheduling block
and the chaining value processing block.

In the message scheduling block, a 512-bit message block is input in two cycles; the left 256-bit
ML is input at the 1st cycle as an input of MS 512

L (MSF 512
L ) and set into eight 32-bit registers

{R00, . . . , R07} through the byte diffusion circuit BD after being XORed with constant values
CONML. The right 256-bit MR is input at the 2nd cycle as an input of MS 512

R (MSF 512
R ) and

set into {R00, . . . , R07} through BD after being XORed with constant values CONMR. At the
3rd cycle, the left 256-bit of the chaining value XL stored in eight 32-bit registers {C00, . . . , C07}
is loaded as an input of MS 512

X (MSF 512
X ) and set into {R00, . . . , R07} through BD after being

XORed with constant values CONMX . The 256-bit intermediate values of MS 512
L (MSF 512

L ),
MS 512

R (MSF 512
R ) and MS 512

X (MSF 512
X ) are stored in registers by repeating the following order:

{R00, . . . , R07} → {R10, . . . , R17} → {C00, . . . , C07} → · · ·
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The pipeline architecture is introduced into the message scheduling block in order to reduce the
rate of increase in area of the message scheduling at high operating frequency. We note that the
output of β is byte-rotated to the left, when the 256-bit intermediate values of MS 512

R (MSF 512
R )

are processed; the output of γ is byte-rotated to the right, when the 256-bit intermediate values
of MS 512

R (MSF 512
R ) or MS 512

X (MSF 512
X ) are processed.

In the chaining value processing block, the right 256-bit of the chaining value XR stored in
eight 32-bit registers {C10, . . . , C17} is loaded as an input of CP512

L (CPF 512
L ) and set into eight

32-bit registers {R20, . . . , R27} after being XORed with the data fed from the message scheduling
block and constant values CONCL. In parallel, XR is loaded as an input of CP512

R (CPF 512
R )

and set into eight 32-bit registers {R30, . . . , R37} after being XORed with the data fed from the
message scheduling block and constant values CONCR.

From the 2nd cycle to the 26th cycle, the 256-bit intermediate values of CP512
L (CPF 512

L )
stored in {R20, . . . , R27} are input to the round function whose F-functions are F1 and F0, and
its output is re-stored into {R20, . . . , R27} through BD after being XORed with the data fed from
the message scheduling block and CONCL. In parallel, the 256-bit intermediate values of CP512

R

(CPF 512
R ) stored in {R30, . . . , R37} are input to the round function whose F-functions are F3 and

F2, and its output is re-stored into {R30, . . . , R37} through BD after being XORed with the data
fed from the message scheduling block and CONCR. The data fed from the message scheduling
block pass through the data rotating function PROTL, PROTR or PROTX

At the 27th cycle, the 256-bit intermediate values of CP512
L (CPF 512

L ) are input to the round
function, and its output are XORed with the data fed from the message scheduling block and XR

stored in {C10, . . . , C17}, and then stored into {C00, . . . , C07}. In parallel, the 256-bit intermediate
values of CP512

R (CPF 512
R ) are input to the round function, and its output are XORed with the

data fed from the message scheduling block and XR stored in {C10, . . . , C17}, and then re-stored
into {C10, . . . , C17}.

AURORA-512 version 2 Type-H4

AURORA-512 version 2 Type-H4 implementation processes one round of one MSM or one CPM 512

by turns with 2 cycles latency. It requires 2 F-function circuits and takes 166 cycles for both CF 512

and FF 512 : 162 cycle for message scheduling and chaining value processing, and 4 cycles for up-
dating the chaining value. The round function is processed by repeating the following order:

MS 512
L (MSF 512

L )→ CP512
L (CPF 512

L )→ CP512
R (CPF 512

R )→
MS 512

R (MSF 512
R )→ CP512

L (CPF 512
L )→ CP512

R (CPF 512
R )→

MS 512
X (MSF 512

X )→ CP512
L (CPF 512

L )→ CP512
R (CPF 512

R )→ · · ·

The pipeline architecture is introduced into the round function circuit, which can improve the
maximum operating frequency.

AURORA-512 version 2 Type-H5

AURORA-512 version 2 Type-H5 implementation processes one round of one MSM or one CPM 512

by turns with 4 cycles latency. It requires only one F-function circuit and takes 332 cycles for
both CF 512 and FF 512 : 324 cycle for message scheduling and chaining value processing, and 8
cycles for updating the chaining value. The processing order of the round function as well as basic
architecture is the same as Type-H5 implementation except the data path width: the data path
width of Type-H4 implementation is 128 bits, while that of Type-H5 implementation is 64 bits.

5.2.3 Evaluation Results

We show our current evaluation results on hardware performance of AURORA-256 and AURORA-
512 version 2. For AURORA-256, Type-H1, Type-H2, Type-H3, Type-H4 and Type-H5 imple-
mentations with S-boxes based on inversion over GF((24)2) are evaluated. For AURORA-512

90



version 2, Type-H1, Type-H4 and Type-H5 implementations with S-boxes based on inversion over
GF((24)2) are evaluated. In addition, Type-H1 implementation with table-lookup S-boxes is eval-
uated in order to achieve higher throughput. Control signals for all selectors and constant values
are generated in a controller module which is included in each implementation.

The environment of our hardware design and evaluation is as follows.

Language Verilog-HDL
Design library 0.13 µm CMOS ASIC library
Simulator VCS version 2006.06
Logic synthesis Design Compiler version 2007.03-SP3

One gate is equivalent to a 2-way NAND and speed is evaluated under the worst-case condi-
tions. Table 5.12 represents the evaluation results. For each implementation of AURORA-256
and AURORA-512 version 2, two types of circuits are synthesized by specifying either area or
speed optimization. In the addition, we investigate the condition to maximize “Efficiency” that
indicates “Throughput” per area, which we call efficiency optimization. “Throughput” is defined
as follows:

Throughput [Mbps] =
Frequency [MHz]× Block Size (512 [bits])

Cycles
.

We also show, for comparison, the best known results of hardware performance of SHA-2 using
a 0.13 µm CMOS ASIC library by Satoh et al. [53]. The performance of AURORA* cannot
be directly compared with them because different design libraries and different logic synthesis
tools were used. However, AURORA* enables a variety of implementations from small-area to
high-throughput implementations; for AURORA-256, the smallest area (8,870 gates) is about 23%
smaller with about 28% higher efficiency (122.2 Kbps/gate) than that of SHA-224/256 (11,484
gates, 95.4 Kbps/gate), and the highest throughput (10,352 Mbps) is about 4.37 times higher than
that of SHA-224/256 (2,370 Mbps). For AURORA-512 version 2, the smallest area (12,389 gates)
is about 46% smaller than that of SHA-384/512 (23,146 gates), and the highest throughput (6,901
Mbps) is about 2.37 times higher than that of SHA-224/256 (2,909 Mbps).

The highest efficiency of AURORA-256 (344.3 Kbps/gate) and AURORA-512 version 2 (146.8
Kbps/gate) is about 2.23 times and 1.38 times higher than that of SHA-224/256 (154.6 Kbps/gate)
and SHA-384/512 (106.6 Kbps/gate), respectively, which indicates that AURORA* is highly effi-
cient hash function family in hardware implementation.
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Table 5.12: Results on Hardware Performance of AURORA-256 and AURORA-512 version 2

Data Path Area Frequency Throughput Efficiency
Architecture Cycles S-box [gates] [MHz] [Mbps] [Kbps/gate]

AURORA-256 Type-H1 18 GF((24)2) 18,883 194.3 5,528 292.7
(0.13µm) 24,645 287.9 8,189 332.3

20,825 252.1 7,171 344.3
Table 27,854 213.2 6,065 217.7

35,016 363.9 10,352 295.6
32,997 345.9 9,838 298.2

Type-H2 36 GF((24)2) 13,446 189.2 2,691 200.1
17,797 293.9 4,180 234.9
15,523 266.2 3,786 243.9

Type-H3 36 GF((24)2) 15,173 260.7 3,707 244.3
23,490 464.3 6,603 281.1
17,064 360.9 5,132 300.8

Type-H4 72 GF((24)2) 11,111 306.4 2,179 196.1
14,255 475.3 3,380 237.1
12,257 423.6 3,012 245.7

Type-H5 144 GF((24)2) 8,870 304.8 1,084 122.2
9,970 509.3 1,811 181.6
9,970 509.3 1,811 181.6

SHA-224/256 - 72 - 11,484 154.1 1,096 95.4
(0.13µm) [53] 15,329 333.3 2,370 154.6

AURORA-512 Type-H1 27 GF((24)2) 28,968 191.4 3,629 125.3
version 2 41,985 285.6 5,416 129.0
(0.13µm) 31,543 244.1 4,629 146.8

Table 42,637 211.4 4,009 94.0
59,657 363.9 6,901 115.7
47,678 309.3 5,865 123.0

Type-H4 166 GF((24)2) 14,942 310.2 957 64.0
17,628 504.8 1,557 88.3
17,012 491.8 1,517 89.2

Type-H5 332 GF((24)2) 12,389 302.7 467 37.7
13,914 509.3 785 56.5
13,914 509.3 785 56.5

SHA-384/512 - 88 - 23,146 125.0 1,455 62.8
(0.13µm) [53] 27,297 250.0 2,909 106.6

For each implementation, the 1st row and the 2nd row show the results of the synthesized circuits
by area and speed optimization, respectively. The 3rd row also shows the results by efficiency
optimization for each implementation of AURORA-256 and AURORA-512 version 2. Bold figures
indicate the best results of AURORA-256 and AURORA-512 version 2 in terms of area, throughput
and efficiency.
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Chapter 6

Applications of AURORA*

6.1 Digital Signature

The digital signature standard (DSS) is specified in FIPS 186-2 [21]. In this standard, the hash
function SHA-1 specified in FIPS 180-1 (FIPS 180-3) is used in many occasions including the
generation of a message digest, the generation and the verification of parameters [20]. Due to
that the same hash size of SHA-1 is not supported by the AURORA* hash algorithm family, it
is not possible to directly replace SHA-1 as a member of the AURORA* family. However, if we
want to use a 160-bit output hash function, an appropriate truncation function may be applied to
AURORA* hash function.

Moreover, there is a draft of the digital signature standard which is available as FIPS 186-3 [22].
In the draft, usages of SHA-2 algorithm family are specified. Thus, our AURORA* algorithm can
be used as a replacement of corresponding SHA-2 algorithm which has the same hash size.

6.2 Keyed-Hash Message Authentication Code (HMAC)

In FIPS 198, the keyed hash message authentication code (HMAC) is standardized [24]. From
the definition of HMAC that any hash function can be applicable in principle, any algorithm of
AURORA* family can be used as a base hash function for it. The output length L and the block
length B should be selected according to the specification of a considered hash function. Table 6.1
summarizes the actual values of L and B for each AURORA* hash algorithm.

6.3 Key Establishment Schemes Using Discrete Logarithm
Cryptography

The pair-wise key establishment schemes using discrete logarithm cryptography is described in
NIST SP800-56A [41]. In this document, minimum bit length of the hash function output is
assigned according to the selected parameter set on of FA, FB, FC, EA, EB, EC, ED, and EE.

Table 6.1: The values of L and B.

Algorithm L B
AURORA-224 224 512
AURORA-256 256 512

AURORA-384 version 2 384 512
AURORA-512 version 2 512 512
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Among them FB and EB require 224-bit output, FC and EC require 256-bit output. ED and
EE require 384-bit and 512-bit output, respectively. Accordingly, AURORA* algorithms can be
used when one of the above domain parameters is selected. To be concrete, each AURORA*
algorithm is used as a hash function H in the concatenation key derivation function or the ASN.1
key derivation function use a hash function in the document.

6.4 Random Number Generation Using Deterministic Ran-
dom Bit Generators

NIST SP800-90 specifies the recommendation for random number generation using determinis-
tic random generators (DRBG) [42]. There are three DRBGs that use a secure hash function.
HMAC DRBG uses the aforementioned HMAC scheme, thus AURORA* algorithms can be ap-
plied by following the rule of the HMAC. Hash DRBG and Dual EC DRBG employ a derivation
function using a hash function called Hash df which call one of SHA-1 and SHA-2 algorithms. Ac-
cordingly, one of AURORA* algorithms can be used as a replacement for one of SHA-2 algorithm
called in Hash df. It may be helpful to note that the seed length for Hash DRBG is 440-bit when
using AURORA-384 version 2 and AURORA-512 version 2, on the other hand the seed length is
888-bit when using SHA-384 and SHA-512. This is due to the block length for these AURORA*
algorithms are 512-bit, not 1024-bit. However this is consistent with the specification because it
is required that minimum entropy for seed and reseed are 192-bit and 256-bit for AURORA-384
version 2 and AURORA-512 version 2, respectively. The specified seed length 440-bit apparently
exceeds these minimum required entropy.
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Chapter 7

Advantages and Limitations

The hash function family AURORA* has the following advantages and limitations. The advantages
are the realization of the design goal of AURORA* family. We believe that all advantages achieved
in one hash function family draw a line between AURORA* and other hash functions.

• High and Well-balanced Performance on Variety of Platforms
To meet the requirements of SHA-3 announced by NIST [39], we defined one of our design
goal of a new hash function family that the new hash functions must achieve good perfor-
mance on a variety of platforms including software for desktop PCs, servers, micro processors
and hardware implementations for ASIC and FPGAs. This design goal was also demanded
in the AES competition, and finally selected algorithm Rijndael actually satisfied the design
goal [14]. The consequences of the design goal can be found in the selected components such
as S-box, matrices, byte oriented architecture, reuse of common structure. As a result, we
confirmed that AURORA*’s performance on a variety of platforms is competitive with other
known hash functions. On the other hand there is limitation due to such the design goal of
AURORA*. It is possible to design a hash function which is very fast when it is implemented
only on a specific platform by scarifying the well-balanced performance on multi platform
implementations. But as explained above, we did not aim for the excellent performance only
on specific platform.

• Sufficient Security Arguments
Moreover, as for the security evaluation, we tried to adopt well-studied components to con-
struct AURORA*, otherwise newly developed components are employed if reasonable secu-
rity arguments are provided for the components. For the AURORA* structure, the strength
against differential cryptanalysis and impossible differential cryptanalysis can be evaluated
in a relatively reasonable way.
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Koç, D. Naccache, and C. Paar, editors, Proceedings of Cryptographic Hardware and Embedded
Systems – CHES 2001, number 2162 in LNCS, pages 171–184. Springer, 2001.

[48] Yu Sasaki. A 2nd-preimage attack on AURORA-512. In IACR ePrint archive 2009/112,
2009.

[49] Yu Sasaki. A collision attack on AURORA-512. In IACR ePrint archive 2009/106, 2009.

[50] Yu Sasaki. A full key recovery attack on HMAC-AURORA-512. In IACR ePrint archive
2009/125, 2009.

[51] Yu Sasaki and Kazumaro Aoki. Preimage attacks on MD, HAVAL, SHA,
and others. CRYPTO2008 rump session, 2008. http://rump2008.cr.yp.to/
efa237568f229268803b82ed02e217ca.pdf.

[52] Yu Sasaki, Lei Wang, Kazuo Ohta, and Noboru Kunihiro. Password recovery on challenge
and response: Impossible differential attack on hash function. In Serge Vaudenay, editor,
Proceedings of AFRICACRYPT 2008, number 5023 in Lecture Notes in Computer Science,
pages 290–307. Springer, 2008.

[53] Akashi Satoh and Tadanobu Inoue. ASIC-hardware-focused comparison for hash functions
MD5, RIPEMD-160, and SHS. Integration, the VLSI Journal, 40(1):3–10, 2007.

[54] Taizo Shirai and Kiyomichi Araki. On generalized Feistel structures using the diffusion switch-
ing mechanism. IEICE. Trans. Fundamentals, E91A(8):2120–2129, 2008.

[55] Taizo Shirai and Bart Preneel. On Feistel ciphers using optimal diffusion mappings across
multiple rounds. In Pil Joong Lee, editor, Proceedings of Asiacrypt’04, number 3329 in LNCS,
pages 1–15. Springer, 2004.

[56] Taizo Shirai and Kyoji Shibutani. Improving immunity of Feistel ciphers against differen-
tial cryptanalysis by using multiple MDS matrices. In Bimal Roy and Willi Meier, editors,
Proceedings of Fast Software Encryption – FSE’04, number 3017 in LNCS, pages 260–278.
Springer, 2004.

[57] Taizo Shirai and Kyoji Shibutani. On Feistel structures using a diffusion switching mechanism.
In M.J.B. Robshaw, editor, Proceedings of Fast Software Encryption – FSE’06, number 4047
in LNCS, pages 41–56. Springer, 2006.

[58] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The 128-bit
blockcipher CLEFIA. In A. Biryukov, editor, Proceedings of Fast Software Encryption –
FSE’07, number 4593 in LNCS, pages 181–195. Springer, 2007.

[59] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1. In Vic-
tor Shoup, editor, Proceedings of CRYPTO’05, number 3621 in LNCS, pages 17–36. Springer,
2005.

[60] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In Ronald
Cramer, editor, Proceedings of EUROCRYPT’05, number 3494 in LNCS, pages 19–35.
Springer, 2005.

[61] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search attack on SHA-0.
In Victor Shoup, editor, Proceedings of CRYPTO’05, number 3621 in LNCS, pages 1–16.
Springer, 2005.

100

http://rump2008.cr.yp.to/efa237568f229268803b82ed02e217ca.pdf
http://rump2008.cr.yp.to/efa237568f229268803b82ed02e217ca.pdf


[62] Hongbo Yu, Gaoli Wang, Guoyan Zhang, and Xiaoyun Wang. The second-preimage attack
on MD4. In Yvo Desmedt, Huaxiong Wang, Yi Mu, and Yongqing Li, editors, Proceedings of
Cryptology and Network Security – CANS 2005, number 3810 in Lecture Notes in Computer
Science, pages 1–12. Springer, 2005.

101





Appendix A

Motivation for the Changes

AURORA is a hash function family which is a first round candidate of SHA-3 competition [39].
AURORA consists of four hash algorithms including AURORA-384 and AURORA-512 which
supports 384-bit and 512-bit hash values, respectively.

Since the initial publication of AURORA, a series of analyses on the initial version have been
published [49, 48, 18, 50, 30]1 . Collision attacks on AURORA-512 are presented in [49, 18, 30],
2nd-preimage attacks on AURORA-512 are presented in [48, 18], and the key recovery attack on
HMAC-AURORA-512 is presented in [50]. Below, we briefly summarize these results.

Collision attacks: [49] shows a collision attack on AURORA-512 with 2236 computations of
AURORA-512 and 2236 × 512 bits of memory. [18] shows an attack on AURORA-512 with
2234.5 computations of AURORA-512 and storing 2229.6 message blocks. [18] also shows a
memory less variant, which requires 2249 computations of AURORA-512. [30] shows three
collision attacks on AURORA-512. The first one needs 2235 computations of AURORA-512
and storing 2192 message blocks, the next one needs 2242 computations of AURORA-512 and
storing 2128 message blocks, and the third one needs 2245 computations of AURORA-512
and storing 216 message blocks.

2nd-preimage attacks: [48, 18] show 2nd-preimage attacks on AURORA-512. [48] uses 2290

computations of AURORA-512 and 2288 × 512 bits of memory. [18] shows an attack on
AURORA-512 with 2288 computations of AURORA-512 and storing less than 231.5 message
blocks. [18] also shows an attack on AURORA-384, which requires 2291 computations.

Key recovery on HMAC: [50] shows a key recovery attack on HMAC-AURORA-512. It recov-
ers 512-bit secret key with 2257 oracle calls and 2259 off-line computations of AURORA-512.
The same paper also presents an attack on HMAC-AURORA-384, which recovers the inner-
key with 2257 oracle calls and 2257 off-line computations of AURORA-384, which leads to a
universal forgery attacks by combining the inner-key with the 2nd-preimage attacks.

Multi-collision attack: [18] shows a multi-collision attack on AURORA-256M. It creates a 16-
collision with 2236.5 computations, while in the ideal case, creating a 12-collision takes 2237

computations. For a memoryless case, finding a 32-collision on AURORA-256M takes 2251.38

computations, while it takes 2251.32 computations to find a 31-collision in the ideal case.

All these attacks make use of the structural properties of the DMMD transform (the Double-
Mix Merkle-Damg̊ard transform). The DMMD transform does provide a collision resistance be-
yond 2n/2, but it is now clear that it does not achieve the optimal resistance of 2n. Besides,
we find that the resistance against 2nd-preimage attacks is much below than the optimal case,
and all these attacks motivate us to employ a different mode of operation for our new version of
AURORA-384 and AURORA-512.

1AURORA-224/256 are also included in the AURORA hash family, but there have not been reported any
analytic result by external researchers. Thus we do not modify the specification of AURORA-224/256.
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For multicollision attacks, if not optimal, both AURORA-224M and AURORA-256M have
better resistance compared to the plain AURORA-224 and AURORA-256. Therefore they may
still be advantageous for applications where multicollision resistance beyond O(2112) or O(2128) is
needed.
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